
Summary
A challenge in modern machine learning is the 
analysis of collections of datasets. We tackle the 
problem of comparing many datasets sampled 
from an underlying manifold with the Earth 
Mover’s Distance (EMD). We present Diffusion 
EMD which is topologically equivalent to EMD 
with a geodesic ground distance and has (nearest 
neighbor) complexity scaling linearly in both the 
number of points and the number of distributions. 

Background & Theory
The Kantorovich Rubenstein Dual form of optimal 
transport has closed form in the wavelet domain 
leading to Wavelet EMD [1] which takes the 
differences of histograms in Rd and performs a 
weighted sum of wavelet coefficients.

We can define equivalent wavelets on the graph 
using diffusion:

We define Diffusion EMD based on these graph 
diffusion wavelets following theory in [2]:

Further we show that as the number of points 
converge to continuous distributions on some 
manifold DEMD is topologically equivalent to 
EMD with geodesic ground distance:

Results

Conclusions
Diffusion EMD approximates EMD with a 
manifold ground distance efficiently using 
an embedding into L1. 

Nearest neighbor calculation scales linearly 
in points and dimensions, and several tricks 
such as Chebyshev approximation, 
interpolative decomposition, and data 
structures reduce computation even further.
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Main Idea
Embed distributions on a graph à
vectors such that the L1 norm is 
equivalent to the EMD between 
distributions.

Distributions on a Swiss Roll

Fig 7. On a dataset of 216 patient samples (distributions) with 23m 
total cells, Diffusion EMD recapitulates known structure between 
patients better than other multiscale methods, by taking advantage 
of the graph structure between cells. 

Fig 4. On the Swiss Roll, Diffusion EMD is more accurate than 
multiscale methods for the same time budget, and faster than 
convolutional Sinkhorn for the same performance.

Cluster Tree Quad Tree Diffusion EMD

Fig 1. Diffusion EMD first embeds datasets into a common data graph, then takes multiscale diffusions for each 
dataset, these diffusions are then used to compute Diffusion EMD between the datasets through L1 norm between 
vectors. This results in fast EMD-nearest-neighbor calculation between distributions.

Fig 6. Other linear time multi-scale approximations using trees 
instead of wavelets produce non-smooth distance functions and 
require averaging over many trees for a reasonable distance even on 
a line graph.

Fig 3. Embeddings of 1000 Gaussians over the swiss roll 
colored by x and t axes. Diffusion EMD preserves the swiss 
roll structure by diffusing along it. 

Fig 5. Ablating parameters of Diffusion EMD we find 
robustness to the largest scale (a), and that the size of the 
embedding can be reduced significantly with interpolative 
decomposition.

Distributions on a Line graph

Fig 2. In a similar amount of time, Diffusion EMD improves 1-
nearest-neighbors classification on spherical MNIST digits over 
other multiscale EMD methods.

Digit Distributions

Patient DistributionsAlgorithm
Diffusion EMD can be calculated using Chebyshev 
approximation:

Further, the resulting embedding has mn(K+1) elements, 
which can be reduced particularly at higher scales using 
interpolative decomposition, with the idea that a few 
columns can be used to approximate the operator at 
high k.

When looking for k-nearest-neighbors in Wasserstein 
space, we can use locally sensitive hashing or other fast 
data structures that rely on underlying geometry.


