Diffusion Earth Mover's Distance and Distribution Embeddings

Alexander Tong^{*}, Guillaume Huguet^{*}, Amine Natik^{*}, Kincaid MacDonald, Manik Kuchroo, Ronald Coifman, Guy Wolf^{**}, Smita Krishnaswamy^{**}

ICML 2021

* Denotes Equal Contribution

Distances between probability distributions

Total-Variation Distance (TV)

$$TV(P,Q) = \frac{1}{2} ||P - Q||_1$$

Distances between probability distributions

Total-Variation Distance (TV)

$$\mathrm{TV}(P,Q) = \frac{1}{2} \|P - Q\|_1$$

$$\mathrm{TV}(P,Q)=1$$

Distances between probability distributions

Total-Variation Distance (TV)

$$TV(P,Q) = \frac{1}{2} ||P - Q||_1$$

$$\mathrm{TV}(P,Q)=1$$

Optimal Transport – The Earth Mover's Distance

Wasserstein Distance:

$$W_d(P,Q) = \inf_{\pi \in \Pi(P,Q)} \int d(x,y)\pi(dx,dy)$$

Ground "cost" or distance: $d(x, y) = ||x - y||_2$

Optimal Transport – The Earth Mover's Distance

Wasserstein Distance:

$$W_d(P,Q) = \inf_{\pi \in \Pi(P,Q)} \int d(x,y) \pi(dx,dy)$$

Ground "cost" or distance: $d(x,y) = \|x - y\|_2$

Kantorovich-Rubenstein Dual:

 $W_d(P,Q) = \sup_{f:|f(x) - f(y)| \le d(x,y)} \int f(x) (P(x) - Q(x)) dx$

Computing EMD with the Dual Form

• In the wavelet domain, there is an explicit form for the witness function f

$$d(p)_{wemd} = \sum_{\lambda} 2^{-j(1+n/2)} |p_{\lambda}|$$

- Take the difference of two histograms and use a wavelet basis to represent them
- Avoids pairwise distance matrices

Shirdhonkar and Jacobs 2008

Diffusion on a Graphs

Diffusion EMD

Use multi-scale density estimates to compute a wavelet EMD on a common data graph

WEMD_{\(\alpha\)}(\(\mu,\)\) :=
$$\sum_{j} 2^{-j(\alpha+1/2)} \sum_{k} |\langle \mu - \nu, \psi_{j,k} \rangle|$$

Diffusion EMD

Diffusion EMD between two datasets X_i , X_j supported on a graph with Diffusion operator P_K

$$DEMD_{\alpha,K}(X_i, X_j) := \sum_{k=0} \|T_{\alpha,k}(X_i) - T_{\alpha,k}(X_j)\|_1; \quad 0 < \alpha < 1/2$$
$$T_{\alpha,k}(X_i) := \begin{cases} 2^{-(K-k-1)\alpha} (\mu_i^{(2^{k+1})} - \mu_i^{(2^k)}) & k < K\\ \mu_i^{(2^K)} & k = K \end{cases}$$
$$\mu_i^{(t)} := \frac{1}{n_i} \mathbf{P}^t \mathbf{1}_{X_i}$$

WEMD_{\alpha}(\mu, \nu) :=
$$\sum_{j} 2^{-j(\alpha+1/2)} \sum_{k} |\langle \mu - \nu, \psi_{j,k} \rangle$$

Diffusion EMD

Diffusion EMD between two datasets X_i , X_j supported on a graph with Diffusion operator P_{K}

$$\begin{split} \text{DEMD}_{\alpha,K}(X_i,X_j) &\coloneqq \sum_{k=0} \|T_{\alpha,k}(X_i) - T_{\alpha,k}(X_j)\|_1; \quad 0 < \alpha < 1/2 \\ T_{\alpha,k}(X_i) &\coloneqq \begin{cases} 2^{-(K-k-1)\alpha}(\mu_i^{(2^{k+1})} - \mu_i^{(2^k)}) & k < K \\ \mu_i^{(2^K)} & k = K \end{cases} \\ \mu_i^{(t)} &\coloneqq \frac{1}{n_i} \mathbf{P}^t \mathbf{1}_{X_i} \\ \end{split}$$
 We show equivalence to an earth mover's distance with a

earth mover's distance with a geodesic ground distance as the number of samples increases:

 $\lim_{X_i \to \mu_i, X_j \to \mu_j} \text{DEMD}_{\alpha, K}(X_i, X_j) \simeq \text{EMD}(\mu_i, \mu_j) \text{ with a geodesic ground distance } d_{\mathcal{M}}^{2\alpha}$

Diffusion EMD uses "soft" density estimates so recreates ground distances better

Diffusion EMD is more accurate for the same computation budget

Diffusion EMD can be used to organize patients according to their single-cell data

Summary

Diffusion EMD embeds the distributions \rightarrow vectors such that L^1 between vectors is equivalent to EMD between distributions

- Uses a geodesic ground distance, scaling with intrinsic dimensionality
- Avoids constructing pairwise distance matrices
- For nearest EMD-neighbors avoids calculating all pairwise EMDs

Thanks!

Code: https://github.com/KrishnaswamyLab/DiffusionEMD Paper: https://arxiv.org/abs/2102.12833 Lab Website: https://www.krishnaswamylab.org

