Diffusion Earth Mover’s Distance and Distribution Embeddings

ICML 2021

* Denotes Equal Contribution
Distances between probability distributions

Total-Variation Distance (TV)

\[TV(P, Q) = \frac{1}{2} \| P - Q \|_1 \]
Distances between probability distributions

Total-Variation Distance (TV)

$\text{TV}(P, Q) = \frac{1}{2} \| P - Q \|_1$

$\text{TV}(P, Q) = 1$
Distances between probability distributions

Total-Variation Distance (TV)

$$\text{TV}(P, Q) = \frac{1}{2} \left\| P - Q \right\|_1$$

$$\text{TV}(P, Q) = 1$$
Optimal Transport – The Earth Mover’s Distance

Wasserstein Distance:

\[W_d(P, Q) = \inf_{\pi \in \Pi(P,Q)} \int d(x, y) \pi(dx, dy) \]

Ground “cost” or distance:

\[d(x, y) = \|x - y\|_2 \]
Optimal Transport – The Earth Mover’s Distance

Wasserstein Distance:

\[W_d(P, Q) = \inf_{\pi \in \Pi(P,Q)} \int d(x, y) \pi(dx, dy) \]

Ground “cost” or distance:

\[d(x, y) = \|x - y\|_2 \]

Kantorovich-Rubenstein Dual:

\[W_d(P, Q) = \sup_{f: |f(x) - f(y)| \leq d(x, y)} \int f(x)(P(x) - Q(x))dx \]
Computing EMD with the Dual Form

• In the wavelet domain, there is an explicit form for the witness function f

$$d(p)_{wemd} = \sum_{\lambda} 2^{-j(1+n/2)}|p_{\lambda}|$$

• Take the difference of two histograms and use a wavelet basis to represent them

• Avoids pairwise distance matrices

Shirdhonkar and Jacobs 2008
Diffusion on a Graphs
Use multi-scale density estimates to compute a wavelet EMD on a common data graph
Diffusion EMD

Diffusion EMD between two datasets X_i, X_j supported on a graph with Diffusion operator P^K

$$\text{DEMD}_{\alpha,K}(X_i, X_j) := \sum_{k=0}^{K} \| T_{\alpha,k}(X_i) - T_{\alpha,k}(X_j) \|_1; \quad 0 < \alpha < 1/2$$

$$T_{\alpha,k}(X_i) := \begin{cases}
2^{-(K-k-1)}(\mu_{i}^{(2^{k+1})} - \mu_{i}^{(2^{k})}) & k < K \\
\mu_{i}^{(2^K)} & k = K
\end{cases}$$

$$\mu_{i}^{(t)} := \frac{1}{n_i} P^t 1_{X_i}$$

$$\text{WEMD}_\alpha(\mu, \nu) := \sum_j 2^{-j(\alpha+1/2)} \sum_k \langle \mu - \nu, \psi_{j,k} \rangle$$
Diffusion EMD between two datasets X_i, X_j supported on a graph with Diffusion operator P

$$
DEM_{\alpha,K}(X_i, X_j) := \sum_{k=0}^K \|T_{\alpha,k}(X_i) - T_{\alpha,k}(X_j)\|_1; \quad 0 < \alpha < 1/2
$$

$$
T_{\alpha,k}(X_i) := \begin{cases}
2^{-(K-k-1)\alpha}(\mu^{(2k+1)}_i - \mu^{(2k)}_i) & k < K \\
\mu^{(2K)}_i & k = K
\end{cases}
$$

$$
\mu^{(t)}_i := \frac{1}{n_i} P^t 1_{X_i}
$$

We show equivalence to an earth mover’s distance with a geodesic ground distance as the number of samples increases:

$$
\lim_{X_i \to \mu_i, X_j \to \mu_j} DEM_{\alpha,K}(X_i, X_j) \simeq EMD(\mu_i, \mu_j) \text{ with a geodesic ground distance } d_{\mathcal{M}}^{2\alpha}
$$
Diffusion EMD uses “soft” density estimates so recreates ground distances better.
Diffusion EMD is more accurate for the same computation budget
Diffusion EMD can be used to organize patients according to their single-cell data.
Summary

Diffusion EMD embeds the distributions → vectors such that L^1 between vectors is equivalent to EMD between distributions

- Uses a geodesic ground distance, scaling with intrinsic dimensionality
- Avoids constructing pairwise distance matrices
- For nearest EMD-neighbors avoids calculating all pairwise EMDs
Thanks!

Code: https://github.com/KrishnaswamyLab/DiffusionEMD
Lab Website: https://www.krishnaswamylab.org