
Problem Statement
There are many datasets where we would like to 
understand the geometry between distributions.

However, useful exact distances between point 
clouds are prohibitively costly to compute.

Here we approximate the geometry between 
distributions using the dual formulation of the 
Wasserstein distribution to first “bin” the space of 
the graph before computing distribution nearest 
neighbors.

Background
Graph Diffusion Kernels [1] Centered at each 
point, we can construct a kernel that is the graph 
equivalent of a gaussian by powering the natural 
diffusion operator P at each point where 

P = D-1A

Kantorovich Dual Formulation Transport distances 
can also be formulated in the dual space as an 
integral probability measure, namely

Results

Conclusions
Computing the structure between many
distributions using the Wasserstein distance is 
slow but can be accelerated by embedding 
distributions into vector spaces where fast nearest 
neighbor calculation is possible.

In spaces with natural diffusion geometries we 
can compute these vector spaces using a series 
of subsampled multiscale diffusion distances 
extremely quickly.
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Main Idea
Compute the geometric structure of 
many distributions over the same 
manifold efficiently by linking the dual 
Kantorovich distance to graph 
diffusions.

Method
Algorithm:

1) Build a nearest neighbors graph between points

2) Compute and concatenate K diffusion scales 
using Chebyshev approximation

3) Down sample and reweight scales to remove 
redundant information in large scales.

4) Compute K-nearest neighbors between 
distributions in L1 embedding space induced by 
scales.

Multiscale Diffusion Distances [2] An alternative 
characterization of Wasserstein distances on a manifold 
was explored in [2]. Using the dual formulation, we 
construct the function f from a set of multiscale diffusion 
kernels. For a diffusion operator P, the Wasserstein 
distance on the diffusion space can be characterized by 
the weighted scales of P applied to the difference of the 
distributions. 

This is similar to the work in [3] which explored tree
approximations to the Wasserstein distance. 

Enzymes dataset class exchange 
preferences vs. experimentally 
observed. LEGS-FCN learns a 
function which still preserves 
exchange preferences between 
classes. Better than the GCN 
baseline.

1000 gaussians of 100 points each centered on 2D “Swissroll” 
manifold in 3D ambient space. We unroll this manifold by constructing 
distances between distributions using our method which is ~50X 
faster than computing all exact Wasserstein distances.

Task 1: Embed Gaussians 
centered on the swiss roll.

Task 2: Embed CRISPER 
perturbed distributions of T-
Cells to understand 
perturbation similarity.

Time complexity:
For m distributions each with n points,
Exact: O(m2n3) for exact pairwise 
Wasserstein distances using network flow
Ours: O(m2n log mn) calculations.


