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High Level Problem:

Given samples from the nominal distribution produce 
an anomaly scoring function that is high on anomalous 
points and low on nominal points.



Deep anomaly detection (on image classification data)
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Reconstruction-based anomaly detection



Reconstruction-based anomaly detection

Anomalies are implicitly defined as inputs that are difficult to reconstruct



Desirable properties from a scoring function

• Similar inputs have similar scores
• Robust to a small number of anomalous samples in the training data
• Very distant points from the training set are classified as anomalous
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A transport view of anomaly detection

The optimal 1-Lipschitz scoring function is (up to a constant) the 
Kantorovich-Rubenstein witness function between the nominal and 
(unknown) anomalous distribution.



• 1-Wasserstein distance between P and Q is defined as:

Where 𝚷 is the family of joint distribution between P and Q, and d(x,y) 
is a ground distance between points
• For d(x,y) = |x – y|, Kantorovich-Rubenstein duality says

f is known as the “witness function”

Transport and the Kantorovich-Rubenstein Dual



The Lipschitz anomaly discriminator



How to train a Lipschitz neural network?

• Gradient Clipping [Arjovsky et al. 2017]

• Gradient norm penalization [Gulrajani et al. 2017]

• Spectral normalization [Miyato et al. 2018]
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Robustness of the optimal score to training set corruption

Prop 1: Adding anomalies to the 
training set does not affect the 
scores very much. Let f* be 
optimal scoring function, and f** 
be optimal under corrupted 
training set



Robustness of the optimal score to training set corruption

Prop 1: Adding anomalies to the 
training set does not affect the 
scores very much. Let f* be 
optimal scoring function, and f** 
be optimal under corrupted 
training set



Outside a radius C, all points are scored anomalous

Prop 2: There exists a constant C 
such that for the optimal f*, 
nominal distribution Pn with 
support Sn, and anomalous 
distribution Pa

Corollary: Outside a radius R, 
every point is scored anomalous



Revisiting properties

• Similar inputs have similar scores
Enforced by gradient penalty

• Robust to a small number of anomalous samples in the training data
Prop 1.

• Very distant points from the training set are classified as anomalous
Prop 2.



Training set contamination

• It is unrealistic to assume a large training set only contains points 
from the nominal distribution
• MSE training approximately equally low anomaly scores across data



Training set contamination
Training data Test data
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MNIST training set corruption

Mean AUROC over digits from 3 seeds for 0%-10% training set corruption on MNIST

Use reconstruction score

Use discriminator loss

Traditional baselines

Deep SVM models



MNIST – Relative score of the all black image

Mean AUROC over digits from 3 seeds for 0%-10% training set corruption on MNIST



VACS data Training set Corruption

(a) Creatinine levels on electronic health record dataset. Creatinine > 2 was taken as anomalous
(b) AUROC for various models with some a small percentage of the training data containing high creatinine patients



CIFAR10 – performance depending on class



Reconstruction-based methods prefer images 
like the mean



Conclusion

• Standard autoencoder based anomaly detection implicitly defines 
anomalies as hard for the model to reconstruct, leading to a few 
issues.
• These issues can be fixed with the addition of a neural network based 

on optimal transport theory which we call LAD.
• Combining LAD with existing models gives state of the art results on 

standard MNIST and CIFAR10 benchmarks.



Thanks!

• Lab Website: https://www.krishnaswamylab.org
• Email: alexander.tong@yale.edu
• Code: https://github.com/krishnaswamylab/LAD
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