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High Level Problem:

Given samples from the nominal distribution produce
an anomaly scoring function that is high on anomalous
points and low on nominal points.



Deep anomaly detection (on image classification data)
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Deep anomaly detection (on image classification data)
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Reconstruction-based anomaly detection

Encoder

Loss(z) = ||z — D(E(m))H%
Score(z) = ||z — D(E(z))|3



Reconstruction-based anomaly detection

Encoder

Loss(z) = ||z — D(E(z))|3
Score(x) = ||z — D<E(37))||%

Anomalies are implicitly defined as inputs that are difficult to reconstruct



Desirable properties from a scoring function

e Similar inputs have similar scores
* Robust to a small number of anomalous samples in the training data
 Very distant points from the training set are classified as anomalous
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(a) Input Data

(c) LAD



A transport view of anomaly detection

The optimal 1-Lipschitz scoring function is (up to a constant) the

Kantorovich-Rubenstein witness function between the nominal and

(unknown) anomalous distribution.
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(a) Input Data
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Transport and the Kantorovich-Rubenstein Dual

e 1-Wasserstein distance between P and Q is defined as:

W(P.Q)= inf B v ld(z
( aQ) wEIIII(lP,Q) (x,y) [ (ZB y)}

Where II is the family of joint distribution between P and Q, and d(x,y)
is a ground distance between points

* For d(x,y) = |x—vy|, Kantorovich-Rubenstein duality says

W(Pa Q) — Sup 4:$pr($) _ 4:mNQf($)
| fllo <1
f is known as the “witness function”




The Lipschitz anomaly discriminator

Training Distribution Z ~ Py Lipschitz
Discriminator
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How to train a Lipschitz neural network?

* Gradient Clipping [Arjovsky et al. 2017]
w < clip(w, —c¢, ¢)

* Gradient norm penalization [Gulrajani et al. 2017]
AEznp, [(IVaf(2)]l2 — 1))

e Spectral normalization [Miyato et al. 2018]
w +— w/o(w)
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Robustness of the optimal score to training set corruption

Prop 1: Adding anomalies to the

training set does not affect the 200
scores very much. Let f* be 175 | B il
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125 A

be optimal under corrupted
training set (1 — )P, + v

100 A
0.75 1
0.50 -

0.25 1

[Eoep,[f7(x) = £ (2)] + B, [ (2) — £ ()] 000 | —— _ -
< —W(P,,(1 —v)P, +~F,) _3 5 B i T ! r




Robustness of the optimal score to training set corruption
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Outside a radius C, all points are scored anomalous

Prop 2: There exists a constant C
such that for the optimal f*,
nominal distribution P, with
support S, and anomalous
distribution P,

ffly) <C— insf {||x — y||} for P,~almost every y
WAST P

Corollary: Outside a radius R,
every point is scored anomalous
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Revisiting properties

e Similar inputs have similar scores
Enforced by gradient penalty

* Robust to a small number of anomalous samples in the training data
Prop 1.

 Very distant points from the training set are classified as anomalous
Prop 2.



Training set contamination

* It is unrealistic to assume a large training set only contains points
from the nominal distribution

* MSE training approximately equally low anomaly scores across data

Encoder Decoder




Training set contamination

Training data ; Test data
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MNIST training set corruption

Train Corrupt. 0.00 0.01 0.05 0.10
ALOCC [6] 0.694 0.511 0.539 0.509
AND [5] 0.975 - - -
AnoGAN (7] 0.913 - - -
CAE [11] 0.965 0.925 0.868 0.832
DCAE [12] 0.967 0.925 0.865 0.829
DSVDD [14] 0.748 0.788 0.718 0.696
IF [15] 0.853 0.853 0.837 0.822
LOF [16] 0.973 0958 0.789 0.709
OCSVM [13] 0.954 0.895 0.828 0.794
RCAE [4] 0.957 0.934 0.870 0.832
LAD (ours) 0.940 0.937 0.923 0.901

LAD + CAE (ours) 0.981 0.965 0.936 0.912

Mean AUROC over digits from 3 seeds for 0%-10% training set corruption on MNIST



MNIST — Relative score of the all black image

Train Corrupt. 0.00  0.01 0.05 0.10 | Black
ALOCC [6] 0.694 0.511 0.539 0.509 | 0.168
AND [5] 0.975 - - - -
AnoGAN [7] 0913 - . - :
CAE [11] 0.965 0.925 0.868 0.832 | 0.067
DCAE [12] 0.967 0.925 0.865 0.829 | 0.059
DSVDD [14] 0.748 0.788 0.718 0.696 | 0.571
IF [15] 0.853 0.853 0.837 0.822 | 0.312
LOF [16] 0.973 0.958 0.789 0.709 | 0.695
OCSVM [13] 0.954 0.895 0.828 0.794 | 0.677
RCAE [4] 0.957 0.934 0.870 0.832 | 0.049
LAD (ours) 0940 0.937 0923 0.901 | 1.000
LAD + CAE (ours) 0.981 0.965 0936 0912 | 1.000

Mean AUROC over digits from 3 seeds for 0%-10% training set corruption on MNIST
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(b)

(a) Creatinine levels on electronic health record dataset. Creatinine > 2 was taken as anomalous
(b) AUROC for various models with some a small percentage of the training data containing high creatinine patients



CIFAR10 — performance depending on class

Class plane car  bird dog | mean
ALOCC [6] 0.421 0.439 0.530 0473 | 0.463
AND [5] 0.717 0.494 0.662 0.504 | 0.617
AnoGAN [7] 0.671 0.547 0.529 0.603 | 0.618
CAE [11] 0.683 0.454 0.677 0.525 | 0.604
DCAE [12] 0.689 0.447 0.679 0.526 | 0.605
DSVDD [14] 0.518 0.656 0.528 0.568 | 0.571
IF [15] 0.670 0.442 0.645 0.516 | 0.599
LOF [16] 0.661 0.440 0.649 0.511 | 0.575
OCSVM [17] 0.684 0.456 0.674 0.502 | 0.590
RCAE [4] 0.675 0.429 0.669 0.531 | 0.592
LAD (ours) 0.597 0.663 0411 0.561 | 0.565
LAD + CAE (ours) 0.723 0.497 0.652 0.544 | 0.635

Table 2: AUC on CIFARI1O for representative classes over 3

seeds with no corruption.
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Reconstruction-based methods prefer images
ike the mean

W e o la-l e =

Fig. 4: Top| 100 nominal images in test set of LAD (a) and
DCAE (b) trained on the automobile class. (c) Mean over
examples of pixel values for each class. Many car images have
white background and/or bright colors that are far from the
mean image. LAD does better at modeling such images.



Conclusion

e Standard autoencoder based anomaly detection implicitly defines
anomalies as hard for the model to reconstruct, leading to a few
Issues.

* These issues can be fixed with the addition of a neural network based
on optimal transport theory which we call LAD.

 Combining LAD with existing models gives state of the art results on
standard MNIST and CIFAR10 benchmarks.



Thanks!

e Lab Website: https://www.krishnaswamylab.org
* Email: alexander.tong@yale.edu

* Code: https://github.com/krishnaswamylab/LAD
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