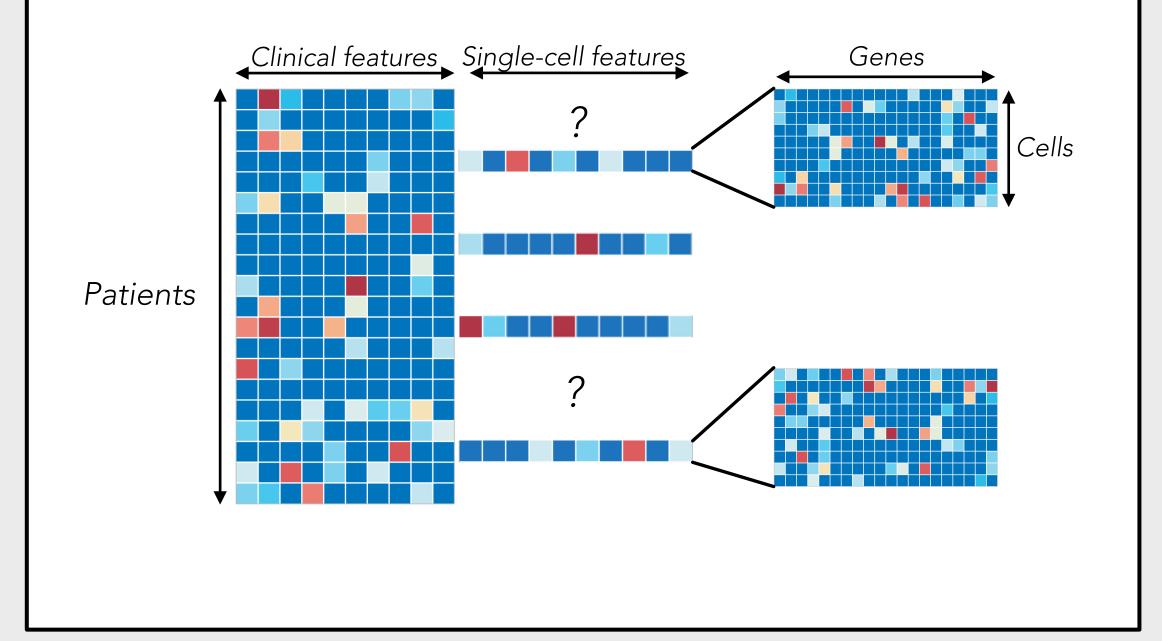
Interpolating Optimal Transport Barycenters of Patient Manifolds

Problem Statement

It is now common to get single-cell patient samples in large scale at many timepoints and across disease spectrum.

We tackle the problem of imputing single-cell samples across these states which can improve understanding of disease dynamics by modeling full dynamics and simplify interpretation by summarizing multiple samples.



Background

Wasserstein Barycenters [1] Generalizes averaging of points to averaging of distributions based on a ground distance between points.

Allows interpolation of a distribution from a weighted set of distributions.

Weights:
$$\lambda = \{\lambda_1, \lambda_2, \dots, \lambda_K\}$$

Distance: $d(x, y) = \begin{cases} \|x - y\|_2 \\ \|x - y\|_1 \\ W_p^p(x, y) \end{cases}$
 $W_p(x, y) = \left(\inf_{\pi \in \Pi(x, y)} \int_{\mathbb{R}^d} D(u, v)^p d\pi(u, v)\right)^{1/p}$
 $\min_{x \in \mathcal{X}} \sum_{k=1}^K \lambda_k d(x, x_k)$

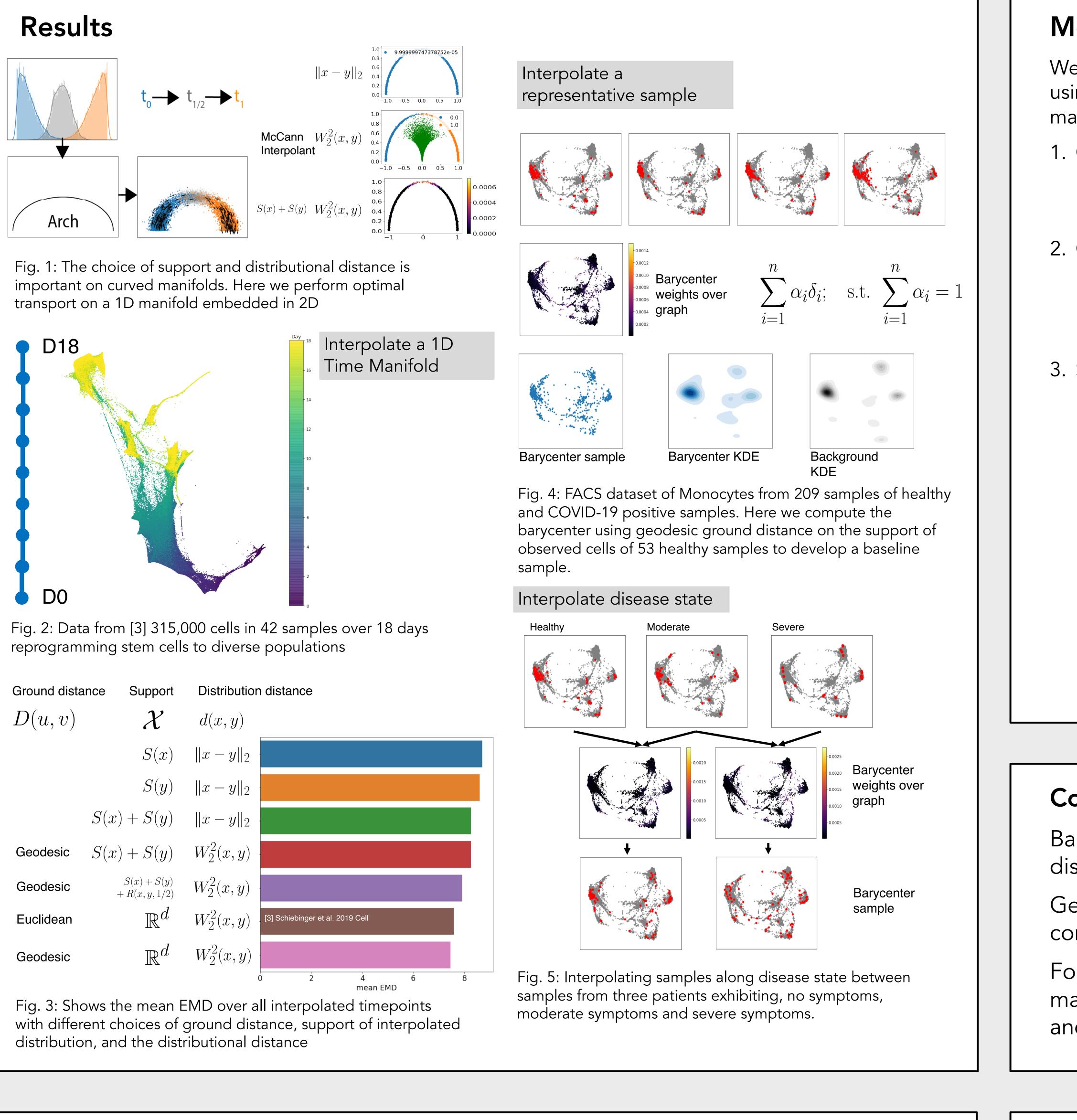
Barycenters on geometric domains [2] Existing work generalized fast Sinkhorn approximation to the geometric using a geodesic distance on discrete domains.

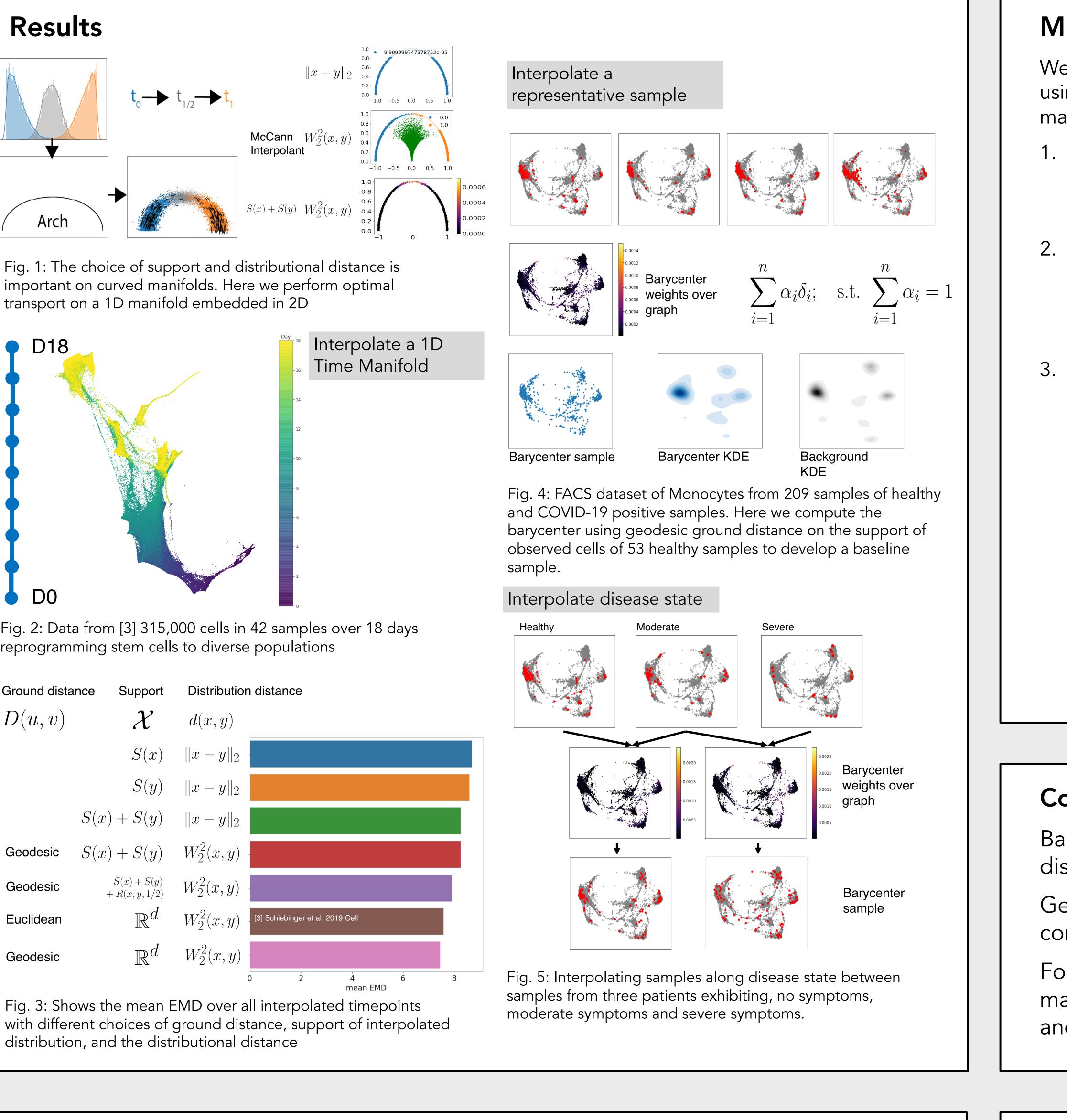
Using repeated projection with the heat kernel barycenter calculation over a fixed domain is computationally efficient.

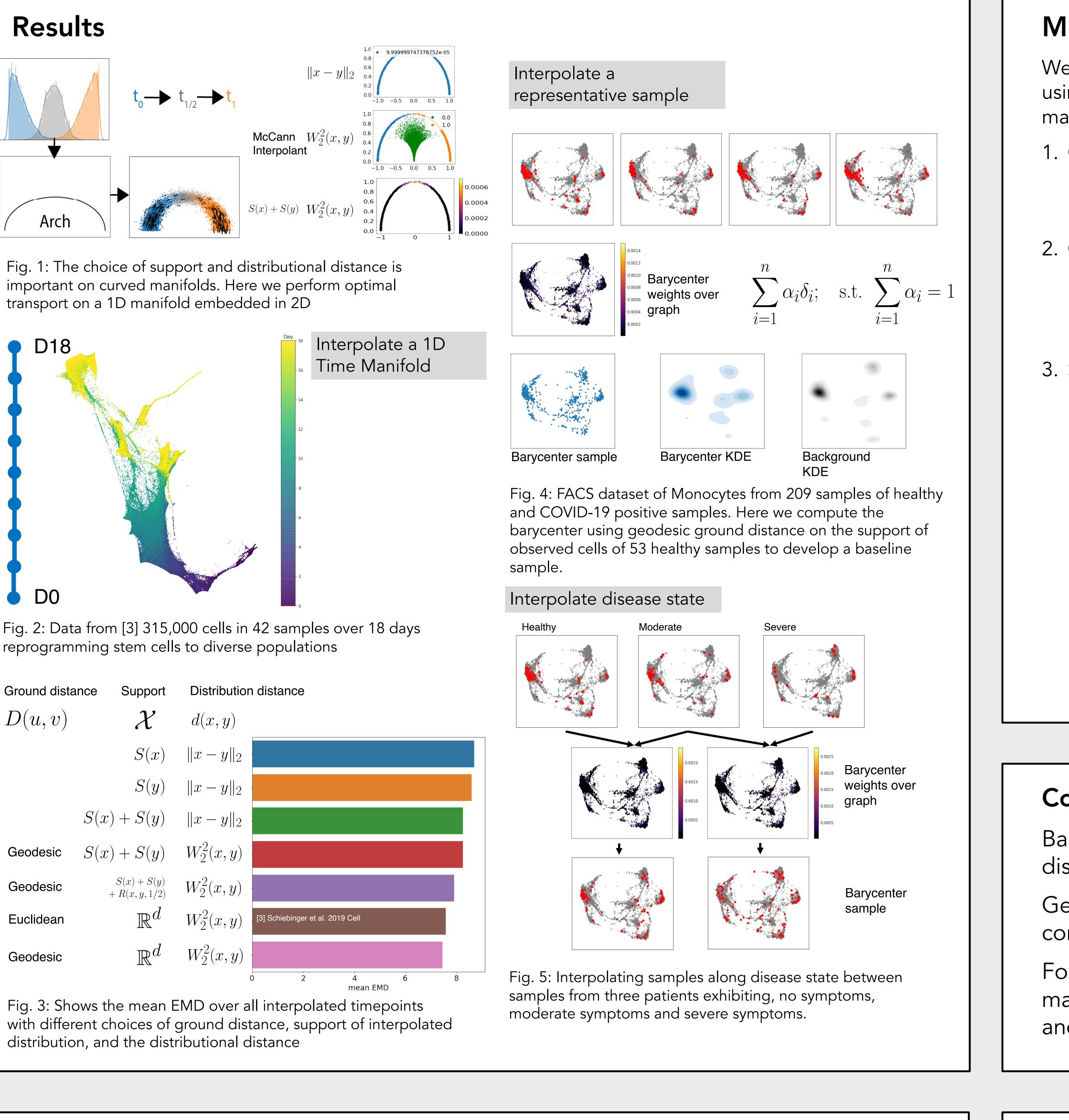
$$W_{2,H_t}^2(x,y) = \gamma \left[1 + \min_{\pi \in \Pi} \operatorname{KL}(\pi \mid H_t) \right]$$

Alexander Tong¹ and Smita Krishnaswamy¹²

Yale University Departments of Computer Science¹ and Genetics²







References

- [1] W. S. Chen et al., "Uncovering axes of variation among single-cell cancer specimens," Nat Methods, 2020
- [2] J. Solomon, et al., "Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains," SIGGRAPH, 2015.
- [3] G. Schiebinger et al., "Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming," Cell, 2019.

Further information

- Supported by the Chan-Zuckerberg Initiative

Method

We interpolate between multiple distributions using Wasserstein barycenters. There are three major adaptations to the single cell domain:

1. Choice of ground distance

We use Euclidean distance following [3] and diffusion distance along a constructed graph

2. Choice of distribution distance

We use the 2-Wasserstein distance for computation and attractive properties on low-dimensional curved manifolds.

3. Support of imputed distribution

We use the support of input distributions, random interpolations between distributions, and a graph of existing samples.

0		0							0								0		0
	0			0		0		0		0		0		0		0		0	
0			D		0		0		0				°		0		0		0
	c	0		0		0		0			2	9		0		0		0	
0			0		0		0		•		0		0		0		0		0
	0	D		0		0		0		0		0		0		0		0	
0			0		0		0		0		0		0		0		0		0
		0		0		0		0		0		0		0		0		0	
0			0		0		0		\bigcirc				\bigcirc		0		0		0
		0		0		0		\circ	\bigcirc	_		\bigcirc				0		0	
0			0		0		0								0		0		0
		0		0		0		0	\bigcirc					0		0		0	
c	þ		0		0		0			\bigcirc	0	-			0		0		0
		0				0		0	-	0		0				0		0	
0	0	9		20			0		0		0		0		0				•
				0		0		0		0		0		0		. (Ď		
c			0		0		0		0		0		0		0) •		0

Conclusions

Barycenters are weighted averages of distributions computed on some support

General barycenter calculation is computationally challenging

For single-cell analysis, support can follow manifold structure improving interpolation and simplifying computation

Email: alexander.tong@yale.edu

Website: https://www.krishnaswamylab.org