
Problem Statement
It is now common to get single-cell patient 
samples in large scale at many timepoints and 
across disease spectrum.

We tackle the problem of imputing single-cell 
samples across these states which can improve 
understanding of disease dynamics by modeling 
full dynamics and simplify interpretation by 
summarizing multiple samples.

Background
Wasserstein Barycenters [1]  Generalizes 
averaging of points to averaging of distributions 
based on a ground distance between points.

Allows interpolation of a distribution from a 
weighted set of distributions.

Barycenters on geometric domains [2] Existing 
work generalized fast Sinkhorn approximation to 
the geometric using a geodesic distance on 
discrete domains.

Using repeated projection with the heat kernel 
barycenter calculation over a fixed domain is 
computationally efficient.

Results

Conclusions
Barycenters are weighted averages of 
distributions computed on some support

General barycenter calculation is 
computationally challenging

For single-cell analysis, support can follow 
manifold structure improving interpolation 
and simplifying computation
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Method
We interpolate between multiple distributions 
using Wasserstein barycenters. There are three 
major adaptations to the single cell domain:

1. Choice of ground distance

We use Euclidean distance following [3] and 
diffusion distance along a constructed graph

2. Choice of distribution distance

We use the 2-Wasserstein distance for 
computation and attractive properties on 
low-dimensional curved manifolds.

3. Support of imputed distribution

We use the support of input distributions, 
random interpolations between distributions, 
and a graph of existing samples.

Fig. 2: Data from [3] 315,000 cells in 42 samples over 18 days 
reprogramming stem cells to diverse populations

Fig. 4: FACS dataset of Monocytes from 209 samples of healthy 
and COVID-19 positive samples. Here we compute the 
barycenter using geodesic ground distance on the support of 
observed cells of 53 healthy samples to develop a baseline 
sample.

Fig. 3: Shows the mean EMD over all interpolated timepoints 
with different choices of ground distance, support of interpolated 
distribution, and the distributional distance

Fig. 5: Interpolating samples along disease state between 
samples from three patients exhibiting, no symptoms, 
moderate symptoms and severe symptoms.
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Fig. 1: The choice of support and distributional distance is 
important on curved manifolds. Here we perform optimal 
transport on a 1D manifold embedded in 2D
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