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Recent advances in biomedical data collection allows the collection of massive datasets

measuring thousands of features in thousands to millions of individual cells. This data

has the potential to advance our understanding of biological mechanisms at a previously

impossible resolution. However, there are few methods to understand data of this scale

and type. While neural networks have made tremendous progress on supervised learning

problems, there is still much work to be done in making them useful for discovery in data

with more difficult to represent supervision. The flexibility and expressiveness of neural

networks is sometimes a hindrance in these less supervised domains, as is the case when

extracting knowledge from biomedical data. One type of prior knowledge that is more

common in biological data comes in the form of geometric constraints.

In this thesis, we aim to leverage this geometric knowledge to create scalable and inter-

pretable models to understand this data. Encoding geometric priors into neural network

and graph models allows us to characterize the models’ solutions as they relate to the fields

of graph signal processing and optimal transport. These links allow us to understand and

interpret this datatype. We divide this work into three sections. The first borrows con-

cepts from graph signal processing to construct more interpretable and performant neural

networks by constraining and structuring the architecture. The second borrows from the

theory of optimal transport to perform anomaly detection and trajectory inference effi-

ciently and with theoretical guarantees. The third examines how to compare distributions

over an underlying manifold, which can be used to understand how different perturbations

or conditions relate. For this we design an efficient approximation of optimal transport

based on diffusion over a joint cell graph. Together, these works utilize our prior under-

standing of the data geometry to create more useful models of the data. We apply these

methods to molecular graphs, images, single-cell sequencing, and health record data.
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Chapter 1

Introduction

The field of data analysis is constantly changing. At my friend’s defense someone asked if

there will ever come a time when we no longer need new algorithms, a time when the field

of data analysis will be as simple as picking the right tool off the shelf and applying it to

some new data. The answer is of course no, as long as the data, the computers, or the

questions continue to change we will always need new algorithms and methods.

Advances in data generation, processing, and storage have give us the unprecedented

ability to learn from this data. In some areas The field of geometric data analysis attempts

to make sense of data using local relationships between points.

The field of single-cell data analysis has only recently become possible with the advent

of cheap sequencing technologies, allowing us to measure many aspects of individual cells at

once. This leads to very high dimensional and noisy datasets which come from an underlying

continuous manifold. This assumption on the data generating process is a common theme

throughout this work, and we will see other priors come into play that are best described

using one literature or another.

This dissertation begins with an overview of graph signal processing, deep learning and

optimal transport in Chapter 2. While these fields have developed from different literature,

each tries to understand how points or distributions of points sampled from some underlying

metric space relate to each other. In this dissertation we blend ideas from these fields to

gain insight into biomedical data, with an emphasis on single-cell transcriptomic data but

also other graph and image datasets. These datatypes have in common that they either
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have some intrinsic relationships between points as in graph datasets, or are assumed to be

sampled from some underlying low dimensional manifold, which can be represented locally.

This dissertation is divided into three sections, Part I focuses on blending deep learning

and graph signal processing by borrowing ideas from graph signal processing to make more

interpretable deep learning components and borrowing ideas from deep learning to make

more performant inherently interpretable models developed from graph signal processing.

Part II blends deep learning and optimal transport to create deep learning models with in-

terpretable properties. Finally, in Part III we bring it full circle, blending optimal transport

and graph signal processing for a fast embedding-based approach to optimal transport on

points sampled from an underlying manifold. This embedding based approach allows us to

quickly approximate the Wasserstein distance between many distributions without having

to solve pairwise optimization problems.

In Chapter 3 we begin by proposing a more interpretable deep learning architecture

using ideas from graph signal processing. Neurons in a layer are unordered and equivalent

under permutation, thus from run to run it may be difficult to find the neuron responsible

for a specific function. We add structure to the layer by imposing a graph structure between

neurons in a given neural network layer. This leads to more repeatable and interpretable

layers, where a neuron will perform the same function from run to run based on the graph

structure by breaking the symmetries of weights in standard architectures without reducing

expressiveness.

In Chapter 4 we bring ideas from deep learning to geometric scattering. Previous work

showed that geometric scattering is competitive with current graph neural network archi-

tectures developed from the deep learning literature in terms of performance [73], but is

not as flexible to new data, relying on a number of fixed parameters. In this chapter we

investigate the benefits of a more flexible geometric scattering network which we call learn-

able geometric scattering (LEGS) which allows us to learn the fixed scattering parameters.

We show this is particularly useful in biomedical graphs, where there are a wide variety of

graphs, from small densely connected graphs, to large and sparsely connected graphs. The

additional flexibility of LEGS proves useful in adapting to these varied datatypes.

In Chapter 5 we bring ideas from optimal transport to bear in the unsupervised anomaly
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detection problem. Here the goal is to given a training sample of normal points build a

model that can detect anomalous points. For example, in images given a set of images of

dogs, detect the cats in a test set. Generally this problem is tackled using reconstruction-

based approaches, train a limited capacity model to reconstruct the training set then score

test images based on how well this model reconstructs them, the idea being that the model

will not be able to reconstruct points far from the training set. We point out three issues

with this approach and suggest a different approach based on a capacity restricted encoder

that directly scores input points. We relate this to solving the dual of the Wasserstein

distance, and apply this to theory to provide guarantees on model output.

In Chapter 6 we relate a particular deep learning model called a continuous normalizing

flow (CNF) [38] to dynamic optimal transport. We then use this to model the trajectories of

single cells over time. One problem with current single cell transcriptomic measurements are

that they are destructive — measuring a cell’s state destroys the cell. This makes it difficult

to measure an individual cell as it progresses over time. Here we collect population level

data at a number of timepoints and infer the individual cell trajectories using a regularized

CNF. We show that we can more accurately model the cell state over time from single-cell

time series data.

In Chapter 7 we relate optimal transport over a manifold to a series of multiscale dif-

fusions over that graph. By comparing the diffusion behavior of distributions over the

graph we can approximate the earth mover’s distance rapidly, particularly when we are

looking for nearest neighbor distributions in Wasserstein metric with a manifold geodesic

ground distance. We show how this generalizes existing multiscale approaches to the earth

mover’s distance computation and improves speed and accuracy while extending this to

graph domains.

In Chapter 8 we extend the work in Chapter 7 to unbalanced optimal transport, which

blends the earth mover’s distance and a metric-free total variation distance. Intuitively, this

is allowing mass to be created and destroyed (at cost) instead of transported. We apply this

new unbalanced transport to a medical concept knowledge graph to understand concepts

extracted from patient notes.

The following chapters in this dissertation are based on the following publications and
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Chapter 2

Preliminaries

This chapter focuses on existing frameworks to understand the geometry of data. In Sec-

tion 2.1 we will focus on graph methods, where the geometry is understood by the local

neighborhoods of each point. Next in Section 2.2 we will explore deep learning methods.

Finally in Section 2.3 we will explore the literature on optimal transport, a way of under-

standing collections of points and distributions within a geometry.

2.1 Graphs

Graphs are a useful way to capture the geometry between points. Graphs can either be built

from data based on some affinity kernel, or defined based on some extrinsic information as

is the case in social networks or knowledge graphs. Often we will take graphs as the

discretization of an underlying probability generating function on some continuous (and

low dimensional) underlying manifold.

2.1.1 Graphs and Random Walks on Data

A graph G = (V,E) consists of a set of N nodes (generally the data points) connected

by a set of (potentially weighted) edges connecting pairs of nodes e = (vi, vj , w) ∈ E.

We will primarily use the adjacency matrix representation A which is a sparse matrix

which contains the edge weights between nodes vi and vj in cell ij i.e. Aij = w(eij). Let

X = {x1,x2, . . . ,xN} be a dataset of N points in Rd. Given a positive semi-definite kernel
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k(x, y) then we can define the graph with adjacency matrix Aij = k(vi, vj). From this we

can define the (diagonal) degree matrix D = diag(d) where di =
∑

j Aij . From this we

will use the combinatorial Laplacian L = D − A, the normalized random walk Laplacian

Lrw = D−1L = I−D−1A, and the symmetric normalized Laplacian Lsym = D−1/2LD−1/2.

2.1.2 Graph Signal Processing

The field of graph signal processing generalizes the theory of signal processing on one di-

mensional signals to the irregular signals on graphs. While some concepts translate well to

graph signal processing, others do not as we will see in the following.

First we define a signal on a graph as a function defined on the nodes f : V → R.

This can be generalized to higher dimensions or the complex domain, but we stick with

the case of real signals for clarity. Given this signal f , we can define frequencies on the

graph based on the spectrum of the graph Laplacian. We note that L is symmetric and

positive semi-definite, thus has real, non-negative eigenvalues and can be decomposed into

an orthogonal eigenvector matrix Ψ and diagonal matrix of eigenvalues Λ as ΨΛΨT = L.

We note that this also applies to the symmetric normalized Laplacian Lsym. We will always

have 0 = λ0 ≤ λ1 ≤ · · ·λN ≤ N for the combinatorial Laplacian. We take these as the

frequencies of the graph. This analogy makes sense in the case of a circle graph where node

i is connected to nodes i + 1 and i − 1 (modulo N). In this case the eigenvectors are the

sine and cosine functions i.e. L has eigenvectors:

sin(2πki/N), cos(2πki/N) (2.1)

for 0 ≤ k ≤ N/2, and has eigenvalues 2 − 2 cos(2πk/N). Increasing k corresponds to

increasing frequency in both the graph and the one dimensional domains.

This implies for a signal f on G we can define a fourier transform of f based on the

frequencies of Ψ of L as f̂ = Ψf . These are also called the loadings of f . We can define

filters in this spectral domain of f̂ operating on the eigenvalues of L. We can define various

filters h(λ) which operate in the spectral domain of L. We will mostly consider low-pass

filters which keep the low frequency components of the signal.
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2.1.3 Diffusion on a Graph

Define the lazy random walk matrix P = (I + D−1/2A)/2. Here the laziness refers to the

addition of self loops (averaging the adjacency matrix with I) which makes analysis of some

periodic graphs simpler, for example bipartite graphs. The t-step lazy random walk of a

signal f is then P tf . This simulates a weighted random walk over the nodes of the graph

with walk probability proportional to the edge weights. Belkin and Niyogi [13], Coifman

and Lafon [46] used this random walk to define Laplacian eigenmaps and diffusion maps

respectively. We will discuss diffusion maps as this will be helpful in understanding diffusion

wavelets for Chapter 4 and the multiscale basis used for embedding signals on graphs in

Chapters 7 and 8.

The diffusion map embeds points into Euclidean space such that the distance in Eu-

clidean space between points is equivalent to the geodesic distance of an underlying manifold.

Suppose X = {x1,x2, . . . ,xN} is a dataset of N points in Rd sampled from some lower

dimensional manifold M ⊂ Rd. Then as the number of points gets large, we would like to

approximate the geodesics along M.

Coifman and Lafon [46] proposed constructing a Gaussian kernel over the points, nor-

malizing for density, then embedding t step random walks on this graph.

The Gaussian affinity between points is defined as

k(x, y) = e−‖x−y‖
2
2/2σ

2
(2.2)

Let Aij = k(xi, xj), and define then define the density normalized affinity matrix as

A(α) = D−αAD−α (2.3)

where D = diag(
∑

j Aij) and the density normalized random walk as

P =
(
D(α)

)−1
A(α) (2.4)

where D(α) = diag(
∑

j A
(α)
ij ).
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P can be eigendecomposed as

Pij =
∑
k

λkψk(xi)φk(xj) (2.5)

Where λk is the kth eigenvalue, and ψk, φk are the kth left and right eigenvectors

respectively.

The diffusion distance between two points at time t can be thought of as the similarity

between the rows of the P t. Specifically,

D(xi, xj)
2
t =

∑
k

(P tik − P tjk)2/φ0(k) (2.6)

This can be equivalently defined in terms of the eigenvectors as

D(xi, xj)
2
t =

∑
k

λ2t
k (ψk(xi)− ψk(xj))2 (2.7)

The diffusion map is defined as

Ψt(x) =
(
λt0ψ1(x), λt2ψ2(x), . . . λt2ψl(x)

)
(2.8)

Defined in this way, the euclidean distance between points in the diffusion map are equal

to the diffusion distance i.e.

D(xi, xj)
2
t = ‖Ψt(xi)−Ψt(xj)‖22 (2.9)

We will use the diffusion operator in Chapters 4 however we will find use for the L1

distance more helpful in Chapters 7 and 8.

2.2 Deep Learning

Over the past decade deep learning has become a growing field, particularly in the image

and natural language domains, but also in other datatypes. Initialy used for supervised

classification and regression tasks — in some ways the simplest task — now models are
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being applied to more difficult tasks with fewer “labels” and less structured supervision.

Tackling these more difficult problems moves us from the setting of modeling what we

already know, to the setting of modeling what we do not know. In this work we aim to

take general priors about how the data is structured and encode them into deep learning

frameworks for more interpretable and accurate models that adhere to our prior knowledge.

Whether this is in the type of anomalies that might occur as we investigate in Chapter 5

or in the behavior of the transcriptome of cells as in Chapter 6, building in these priors to

deep neural networks is a key step in more useful models for discovery.

2.2.1 Autoencoders

One of the simplest models for unsupervised learning is the autoencoder. The goal here

is often to create a better representation of the data by restricting the model capacity. In

general we take an encoder f : Input → Rd and a decoder g : Rd → Input parameratized

by deep neural networks and train them such that ‖g(f(x))− x‖22 is small.

2.2.2 Lipschitz Neural Networks

A function is Lipschitz informally if its output does not vary too much over small changes in

its input. This is a fairly weak statement of regularity, but is nevertheless useful, particularly

in the context of optimal transport which we will see later. More formally, a function

f : X → Y where X is equipped with a metric dX and Y is equipped with a metric dY is k

Lipschitz continuous if for all x, y:

dY(f(x), f(y))

dX (x, y)
≤ k (2.10)

It would be useful to optimize over the space of all Lipschitz functions, unfortunately it

is often not computationally feasible. Instead it is much easier to optimize over the space

of Lipschitz functions parameterized by a neural network architecture. There are a few

works on how to enforce this constraint, the first is through weight clipping [8]. If all of

the weights are small and each layer is 1-Lipschitz, then the whole network will also be

1-Lipschitz. Later work uses gradient regularization [84], with the idea of regularizing the
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magnitude of the gradient with respect to the input, as it is easy to show if ‖∇f(x)‖ ≤ k

for all x then a function is k Lipschitz.

2.2.3 Continuous Normalizing Flows

A continuous normalizing flow as defined in [38, 81] models an ODE. Since these two

works there is a growing literature on modeling ODEs. The continuous normalizing flow

is paramterized by a neural network f : (x, t) → dx. This neural network models the

derivate of with respect to time of x. The magic of a continuous normalizing flow is the

efficient forward and backwards integration of the flow with a standard neural network

architechture for f . The backpropogation is achieved through the adjoint method and has

constant memory needs regardless of the number of integration steps. This allows us to

disentangle the number of integration steps from the parameterization and think about the

input flow. We will use this framework in Chapter 6 to model the movement of cells through

transcript space.

2.3 Optimal Transport

Optimal transport is a framework for lifting distances between points to distances between

measures. Given a transport cost between locations, optimal transport is the problem of

the best transportation of one measure to another. Originally studied by Kantorovich in

the context of transporting goods to factories [100], the field of optimal transport has grown

considerably in the last decade [50, 8, 191, 165, 61] and is widely applied across machine

learning for both the analysis of datasets that are naturally analyzed as distributions [181],

and as an interpretation of Lipschitz regularized functions [8, 84]. We now define the

Wasserstein distance, also known as the Kantorovich or Kantorovich-Rubenstein metric.

Let µ, ν be two probability distributions on a measurable space Ω with metric d(·, ·),

Π(µ, ν) be the set of joint probability distributions π on the space Ω × Ω, where for any

subset ω ⊂ Ω, π(ω×Ω) = µ(ω) and π(Ω× ω) = ν(ω). The α-Wasserstein distance Wd also
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known as the earth mover’s distance (EMD) for α = 1 is defined as:

Wα
d (µ, ν) := inf

π∈Π(µ,ν)

∫
Ω×Ω

d(x, y)απ(dx, dy). (2.11)

Define the Lipschitz constant of the function f : Ω→ R with respect to the metric d as

‖f‖d := maxx∈Ω6=y∈Ω
|f(x)−f(y)|
d(x,y) , then the dual of equation 2.11 is:

Wd(µ, ν) = sup
f :‖f‖d≤1

∫
Ω
f(x)µ(dx)−

∫
Ω
f(y)ν(dy). (2.12)

This formulation is known as the Kantorovich-Rubenstein dual with the witness function f .

Chapters 5, 7, and 8 will exploit this dual formulation in particular for its computational

benefits and its usefulness as optimizing over the space of regularized functions.

2.3.1 Integral Probability Measures and φ-divergences

This dual form connects the Wasserstein distance to a family of metrics over probability

measures known as the integral probability measures (IPMs). For a family of functions F

IPMs have the form:

IPM(µ, ν) := sup
f∈F

∣∣∣∣∫ f(x)µ(dx) =

∫
f(y)ν(dy)

∣∣∣∣ . (2.13)

A number of metrics can be formulated in this way:

1. Wasserstein metric with respect to the ground metric d is the IPM with the family

Wd := {f | ‖f‖d ≤ 1}.

2. MMD the maximum mean discrepency with respect to the kernel k is the IPM with

the family Mk := {f ∈ Hk | ‖f‖k ≤ 1, where ‖f‖k denotes the norm of f in the

reproducing kernel Hilbert space (RKHS) of k.

3. TV the total variation distance is the IPM with TV := {f | maxx∈Ω |f(x)| ≤ 1}.

4. Kolmogorov when Ω := RD is the IPM with K := {f | 1(−∞,x) : x ∈ RD}.
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Another widely studied family of divergences are the φ-divergences defined as diver-

gences of the following form.

Dφ(µ, ν) :=


∫

Ω φ(µν ) if µ� ν

+∞ else

, (2.14)

where φ : Ω → R is a convex function, φ(1) = 0, and µ � ν denotes µ is absolutely

continuous with respect to ν. A number of well known metrics fall into this family with

Ω := R:

1. KL the Kullback-Liebler divergence is a φ-divergence with φ(x) = x log x.

2. TV the total variation distance is a φ-divergence with φ(x) = |x− 1|.

3. Hellinger with φ(x) = (
√
x− 1)2.

4. χ2-divergence with φ(x) = (x− 1)2.

Interestingly the Total Variation distance is the only (non-trivial) metric that is both a

φ-divergence and an integral probability metric [193]. An intuitive interpretation of the

differences between IPMs and φ-divergences is that φ-divergences are vertical distances

between measures and IPMs are horizontal. φ-divergences are parameterized in terms of

the ratio of µ
ν over the space, this can be thought of as distances which depend only on the

pointwise ratio of the two measures. In contrast, IPMs are horizontal distances motivated

by weak convergence of measures, in that they compare measures based on a (potentially

horizontally regularized) function. In particular, in the case of an IPM with a Lipschitz

regularized family of functions, this is exactly a horizontal distance, as is clearly expressed

in the primal form of the Wasserstein distance.

2.3.2 Unbalanced Wasserstein Distances

The unbalanced Wasserstein distance considers problems where the measures µ and ν are

unbalanced and may have unequal mass. To deal with these unequal masses, they consider

a Wasserstein distance with additional teleportation cost usually taken as a φ-divergence.
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The Unbalanced Wasserstein distance (UW) can be generally defined as:

UWd(µ, ν) := inf
µ′,ν′

{
Wd(µ

′, ν ′) + λµDφ(µ, µ′) + λνDφ(ν, ν ′)
}
. (2.15)

In connection with the entropic regularized version of optimal transport [50] the KL-

divergence is a common choice. In particular, as proved in [129]and [44] the Wasserstein-

Fisher-Rao where d(x, y) = − log cos(min(d(x, y)/δ, π/2)), with some cutoff distance δ then

WFR(µ, ν) := UWd(µ, ν)
1
2 (2.16)

Later we will investigate a similarly useful variant using the total variation unbalanced

Wasserstein distance in Chapter 8.

2.3.3 Efficient Computation

When both µ and ν are discrete distributions over the a discrete measure space (X , dX ) then

there are a variety of algorithms for computing the transport exactly and approximately.

When µ, ν are discrete distributions over points in Rd with m,n sized supports respectively

this can be equivalently expressed in matrix notation as

Wd(µ, ν) := min
Π≥0

m∑
i=1

n∑
j=1

Πijd(xi, xj)

subject to:
m∑
i=1

Πij = νj , ∀j ∈ {1, . . . , n} (2.17)

n∑
j=1

Πij = µj , ∀i ∈ {1, . . . ,m}

This constrained optimization can be solved using a network-flow algorithm in Õ(n3)

time and O(n2) space. This however, is much to slow to be useful in modern machine

learning problems where linear or log-linear time is preferred.

Entropic Regularization Since formulated in 2013 by Cuturi [50], the entropy regu-

larized version of the Wasserstein distance has received significant attention. Somewhat
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surprisingly, adding an entropy penalty to the transport matrix admits an extremely sim-

ple algorithm and potentially more generalizable performance in some situations. The

entropy regularized version of the problem relies on a matrix entropy penalty H(Π) =

−
∑

ij Πij log Πij . The entropy regularized optimization is now:

Wd(µ, ν) := min
Π≥0

m∑
i=1

n∑
j=1

Πijd(xi, xj) + γH(Π)

subject to:
m∑
i=1

Πij = νj , ∀j ∈ {1, . . . , n} (2.18)

n∑
j=1

Πij = µj , ∀i ∈ {1, . . . ,m}

By using the Sinkhorn scaling algorithm, we can solve this optimization by iterative matrix

vector products of the exponentiated cost matrix exp(−γd). In practice, when the costs

are near 1, the γ regularization can be as low as 0.01 without running into numerical

difficulties. The Sinkhorn method has a time complexity of Õ(n2) and space complexity of

O(n2). There are more recent works that attempt to scale this to larger problems. Using

nystrom extension, manifold approximation [192], multiscale approximation [96], or gradient

descent [8, 76] can all reduce the computational expense.

Computation using the dual formulation Since it is in general difficult to optimize

over the entire space of 1-Lipschitz functions, many works optimize the cost over a modified

family of functions such as functions parameterized by clipped neural networks [8], functions

defined over trees [115], or functions defined over Haar wavelet bases [75]. In Chapters 7

and 8 we will utilize wavelets defined over a graph to approximate the optimal Lipschitz

witness function.
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Part I

Deep Learning Using Graph

Spectral Priors
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Chapter 3

Graph Spectral Regularization

3.1 Introduction

Common intuitions and motivating explanations for the success of deep learning approaches

rely on analogies between artificial and biological neural networks, and the mechanism they

use for processing information. However, one aspect that is overlooked is the spatial orga-

nization of neurons in the brain. Indeed, the hierarchical spatial organization of neurons,

determined via fMRI and other technologies [153, 134], is often leveraged in neuroscience

works to explore, understand, and interpret various neural processing mechanisms and high-

level brain functions. In artificial neural networks (ANN), on the other hand, hidden layers

offer no organization that can be regarded as equivalent to the biological one. This lack of

organization poses great difficulties in exploring and interpreting the internal data repre-

sentations provided by hidden layers of ANNs and the information encoded by them. This

challenge, in turn, gives rise to the common treatment of ANNs as black boxes whose oper-

ation and data processing mechanisms cannot be easily understood. To address this issue,

we focus on the problem of modifying ANNs to learn more interpretable feature spaces

without degrading their primary task performance.

While most neural networks are treated as black boxes, we note that there are meth-

ods in ANN literature for understanding the activations of filters in convolutional neural

networks (CNNs) [117], either by examining trained networks [221], or by learning a better

representation [126, 223, 172, 194, 176], but such methods rarely apply to other types of
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networks, in particular dense neural networks (DNNs) where a single activation is often not

interpretable on its own. Furthermore, convolutions only apply to datatypes where we know

the feature structure apriori, as in the case of images and natural language. In layers of a

DNN, there is no enforced structure between neurons. The correspondence between neurons

and concepts is only determined based on the random initialization of the network. In this

work, we encourage structure between neurons in the same layer, creating more localized

and interpretable layers in dense architectures.

More specifically we propose a Graph Spectral Regularization to encourage arbitrary

graph structure between neurons within a layer. The internal layers of a neural network

are constrained to take the structure of a graph, with graph neighbors activating on similar

inputs. This allows us to map the activations of a given layer over the graph and interpret

new input by examining the activations. We show that graph-structuring a hidden layer

causes useful, interpretable features to emerge. For instance, we show that grid-structuring

a layer of a classification network creates a structure over which convolution can be applied,

and local receptive fields can be traced to understand classification decisions.

While a majority of the time imposing a known graph structure gives interpretable

results, there are circumstances where we would like to learn the graph structure from data.

In such cases we can learn and emphasize the natural graph structure of the feature space.

We do this by an iterative process of encoding the data, and modifying the graph based

on the feature co-activation patterns. This procedure reinforces existing patterns in the

data. This allows us to learn an abstracted graph structure of features in high-dimensional

domains such as single-cell RNA sequencing.

The main contributions of this work are as follows: (1) Demonstration of hierarchical,

spatial, and smoothed feature maps for interpretability in dense networks. (2) A novel

method for learning and reinforcing the natural graph structure for complex feature spaces.

(3) Demonstration of graph learning and abstraction on single-cell RNA-sequencing data.
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3.2 Related Work

Disentangled Representation Learning: While there is no precise definition of what

makes for a disentangled representation, the aim is to learn a representation that axis aligns

with the generative factors of the data [91, 4]. [90] suggest a way to disentangle the represen-

tation of variational autoencoders [104] with β-VAE. Subsequent work has generalized this

to discrete representations [59], and simple hierarchical representations [65]. These works

focus on learning a single vector representation of the data, where each element represents

a single concept. In contrast, our work learns a representation where groups of neurons

may be involved in representing a single concept. Moreover, disentangled representation

learning can only be applied to unsupervised models and only the most compressed level

of either an autoencoder [90] or generative adversarial network as in [40], whereas graph

spectral regularization (GSR) can be applied to any or all layers of the network.

Graph Structure in ANNs: Graph based penalties have been used in the graph signal

processing literature [14, 225, 189], but are rarely used in an ANN setting. In the biological

data setting, [142] used a graph penalty in sparse logistic regression on gene expression data.

Another way of utilizing graph structure is through graph convolutional networks (GCN).

GCNs are a related body of work introduced by [80], and expanded on by [180], but focus

on a different set of problems (For an overview see [216]). GCNs require a known graph

structure. We focus on learning a graph representation of general data. This learned graph

representation could be used as the input to a GCN similar to our MNIST example.

3.3 Enforcing Graph Structure

We consider the intra-layer relationships between neurons or larger structures such as cap-

sules. For a given layer of neurons we construct a graph G = (V,E) with V = {v1, . . . , vN}

the set of vertices and E ⊆ V ×V the set of edges. Let W be the weighted symmetric adja-

cency matrix of size N×N with Wij = Wji ≥ 0 representing the weight of the edge between

vi and vj . The graph Laplacian L is then defined as L = D −W where Dii =
∑

jWij and

Dij = 0 for i 6= j.
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To enforce smoothing we use the Laplacian smoothing loss. On some activation vector

z and fixed Laplacian L we formulate the graph spectral regularization function G as:

G(z,L) = zTLz =
∑
ij

Wij ||zi − zj || (3.1)

Where ||·|| denotes the Frobenius norm. We add it to the reconstruction or classification

loss with a weighting term α. This adds an additional objective that activations should be

smooth along the graph defined by L. This optimization procedure applies to any multi-

layer model and valid graph Laplacian. We apply this algorithm to grid, and hierarchical

graph structures on both autoencoder and classification dense architectures.

Algorithm 1 Graph Learning

Input batches xi, model M with latent layer activations zi, regularization weight α.
Pre-train M on xi with α = 0
for i = 1 to T do

Create Graph Laplacian Li from activations zi
for j = 1 to m do

Train M on xi with α = w and L = Li with MSE + loss in eq. 3.1
end for

end for

3.3.1 Learning and Reinforcing an Abstracted Feature-space Graph

Instead of enforcing smoothness over a fixed graph, we can learn a feature graph from

the data (See Algorithm 1) using neural network activations themselves to bootstrap the

process. Note, that most graph and kernel-based methods are applied over the space of

observations but not over the space of features. One of the reasons is because it is even

more difficult to define a distance between features than it is between observations. To

circumvent this problem, we propose to learn a feature graph in the latent space of a neural

network using feature co-activations as a measure of similarity.

We proceed by creating a graph using feature activation similarity, then applying this

graph using Laplacian smoothing for a number of iterations. This converges to a graph

of a latent feature space at the level of granularity of the number of dimensions in the
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corresponding layer.

Our algorithm for learning the graph consists of two phases. First, a pretraining phase

where the model is learned with no graph regularization. Second, we alternate between

constructing the graph from the similarities of the embedding layer features and further

training the network for reconstruction and smoothness on the graph. There are many

ways to create a graph from the feature × datapoint activation matrix. We use an adaptive

Gaussian kernel,

K(zi, zj) =
1

2
exp

(
− ||zi − zj ||

2
2

σ2
i

)
+

1

2
exp

(
− ||zi − zj ||

2
2

σ2
j

)

where σi is the adaptive bandwidth for node i which we set as the distance to the kth

nearest neighbor of feature. An adaptive bandwidth Gaussian kernel is necessary for general

architectures as the scale of the activations is not fixed. Batch normalization can also be

used to limit the activation scale.

Since we are smoothing on the graph then constructing a new graph from the smoothed

signal the learned graph converges to a steady state where the mean squared error acts as

a repulsive force to stop the graph collapsing any further. We present the results of graph

learning a biological dataset and show that the learned structure adds interpretability to

the activations.

3.4 Experiments

Through examples, we show that visualizing the activations of data on the regularized layer

highlights relationships in the data that are not easily visible without it. We establish this

with two examples on fixed graphs, then move to graphs learned from the structure of the

data with two examples of hierarchical structure and two with progression structure.

3.4.1 Fixed Structure

Enforcing fixed graph structure localizes activations for similar datapoints to a region of the

graph. Here we show that enforcing a 8x8 grid graph on a layer of a dense MNIST classifier
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causes receptive fields to form, where each digit occupies a localized group of neurons on

the grid. This can, in principle, be applied to any neural network layer to group neurons

activating to similar features. Like in FMRI data or a convolutional neural network, we can

examine the activation patterns for each localized group of neurons. For a second example,

we show the usefulness in encouraging localized structure on a capsulenet architecture [176].

Where we are able to create globally consistent structure for better alignment of features

between capsules.

Figure 3.1: Shows average activation by digit over an (8x8) 2D grid using graph spectral
regularization and convolutions following the regularization layer. Next, we segment the
embedding space by class to localize portions of the embedding associated with each class.
Notice that the digit 4 here serves as the null case and does not show up in the segmentation.
Finally, we show the top 10% activation on the embedding of some sample images. For two
digits (9 and 3) we show a normal input, a correctly classified but transitional input, and
a misclassified input. The highlighted regions of the embedding space correlate with the
semantic description of the input.

Enforcing Grid Structure on MNIST

Without GSR, activations are unstructured and as a result are difficult to interpret, in

that it is difficult to visually identify even which class a digit comes from based on the

activation pattern (See Fig. 3.1). With GSR we can organize the activations making this
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representation more visually distinguishable. Since we can now take this embedding as an

image, it is possible to use a standard convolutional architecture in subsequent layers in

order to further filter the encodings. When we add 3 layers of 3x3 2D convolutions with 2x2

max pooling we see that representations for each digit are compressed into specific areas of

the image. This leads to the formation of receptive fields over the network pertaining to

similar datapoints. Using these receptive fields, we can now extract the features responsible

for digit classification. For example, features that contribute to the activation of the top

right of our grid we can associate with those features that contribute to being the digit 9.

The activation patterns on the embedding layer correspond well to a human perception

of the digit type. The 9 that is misclassified as 7 both has significant activation in the 7

region of the embedding layer, and looks visually close to a 7. We can now interpret the

embedding layer as a sort of brain map, where the map can map regions of activations, to

types of inputs. This is not possible in a standard neural network, where activations are

not spatially organized.

Figure 3.2: (a) shows the regularization structure between capsules. (b-c) Show recon-
struction when one of the 16 dimensions in the DigitCaps representation is tweaked by
0.05 ∈ [−0.25, 0.25]. (b) Without GSR each digit responds differently to perturbation of
the same dimension. With GSR (c) a single dimension represents line thickness across all
digits.

Enforcing Node Consistency on Capsule Networks

Capsule networks [176] represent the input as a set of vectors where norm denotes activation

and each component corresponds to some abstract feature. These elements are generally

unordered. Here we use GSR to order these features consistently between digits. We
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train a capsule net on MNIST with GSR on 16 fully connected graphs between the 10

digit capsules. In the standard capsule network, each capsule orders features randomly

based on initialization. However, with GSR we obtain a consistent feature ordering, e.g.

node 1 corresponds to line thickness across all digits. GSR enforces a more ordered and

interpretable encoding where localized regions are similarly organized, and the global line

thickness feature is consistently learned between digits. More generally, GSR can be used

to order nodes such that features common across capsules appear together. Finally, GSR

does not degrade performance much, as can be seen by the digit reconstructions in Fig. 3.2.

In these examples the goal was to enforce a specified structure on unstructured features,

but next we will examine the case where the goal is to learn the structure of the reduced

feature space.

3.4.2 Learning Graph Structure

Using the procedure defined in Sec. 3.3.1, we can learn a graph structure. We first show that

depending on the data, the learned graph exhibits either cluster or trajectory structure. We

then show that our framework can learn structures that are hierarchical, i.e. subclusters

within clusters or trajectories within clusters. Hierarchies are a difficult structure for other

interpretability methods to learn [65]. However, our method naturally captures this by

allowing for arbitrary graph structure among neurons in a layer.

Figure 3.3: We show the structure of the training data and snapshots of the learned graph
for (a) three modules and (b) eight modules. (c) shows we have the mean and 95% CI of
the number of connected components in the trained graph for over 50 trials.

23



Cluster Structure on Generated Data

We structure our nth dataset to have exactly n feature clusters. We generate the data

with n clusters by first creating 2n data points representing the binary numbers from 0 to

2n − 1, then added Gaussian noise N(0, 0.1). This creates a dataset with a ground truth

number of feature clusters. In the nth dataset the learned graph should have n connected

components for n independent features. In Fig. 3.3 (a-b) we can see how this graph evolves

over time for 3 and 8 modules. (c) shows how the learned graph learns the correct number

of connected components for each ground truth number of clusters.

Figure 3.4: Shows (a) graph structure over training iterations (b) feature activations of
parts of the trajectory. PHATE [146] embedding plots colored by (c) branch number and
(b) inferred trajectory location showing the branching structure of the data.

Trajectory Structure on T cell Development Data

Next, we test graph learning on biological mass cytometry data, which is a high dimensional,

single-cell protein dataset, measured on differentiating T cells from the Thymus [185]. The

T cells lie along a bifurcating progression where the cells eventually diverge into two lineages

(CD4+ and CD8+). Here, the structure of the data is a trajectory (as opposed to a pattern

of clusters). We can see in Fig. 3.4 how the activated nodes in the graph embedding layer

correspond to locations along the data trajectory, and importantly, the learned graph is a

single connected component. The activated nodes (yellow) move from the bottom of the

embedding to the top as T-cells develop into CD8+ cells. The CD4+ lineage is also CD8-
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Figure 3.5: Graph architecture, PCA plot, activation heatmaps of a standard autoencoder,
β-VAE [90] and a graph regularized autoencoder. With relu activations normalized to
[0, 1] for comparison. In the model with graph spectral we are able to clearly decipher the
hierarchical structure of the data, whereas with the standard autoencoder or the β-VAE
the structure of the data is not clear.

and thus looks like a mixture between the CD8+ branch and the naive T cells. The learned

graph structure here has captured the transitioning structure of the underlying data.

Clusters within Clusters on Generated Data

We demonstrate graph spectral regularization on data that is generated with a structure

containing sub-clusters. Our data contains three large-scale structures, each comprising two

Gaussian sub clusters generated in 15 dimensions (See Fig. 3.5). We use this dataset as it

has both global and local structure. We demonstrate that our graph spectral regularized

model is able to pick up on both the global and local structure of this dataset where

disentangling methods such as β-VAE cannot. We use a graph-structure layer with six

nodes with three connected node pairs and employ the graph spectral regularization. After

training, we find that each node pair acts as a “super node” that detects each large-scale

cluster. Within each super node, each of the two nodes encodes one of each of the two

Gaussian substructures. Thus, this specific graph topology is able to extract the hierarchical

topology of the data.

Hierarchical Cluster and Trajectory Structure on Developing Mouse Cortex

Data.

In Fig. 3.6 we learn a graph on a single-cell RNA-sequencing dataset of over 4000 cells and

over 8000 genes. The data contains a set of cells in the process of developing from neural
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Figure 3.6: Shows correlation between a set of marker genes for specific cell types and
embedding layer activations. First with the standard autoencoder, then our autoencoder
with graph spectral regularization. The left heatmap is biclustered, the right heatmap is
grouped by connected components in the learned graph. We can see progression especially
in the largest connected component where features on the right of the component correspond
to less developed neurons.

stem cells to full neurons in the mouse brain. While there are many gene modules that

contribute to the neuronal development, there are some states that have been studied. We

use a list of cell type marker genes to validate our method. We use 1000 PCA components

of the data in an autoencoder with a 20-dimensional embedding space. We learn the graph

using an adaptive bandwidth gaussian kernel with the bandwidth for each feature set to

the Euclidean distance to the nearest neighboring feature.

Our graph learns six components that represent meta features over the gene space. We

can identify each with a specific type of cell or related types of cells. For example, the

light green component (cluster 2) represents the very early stage neural stem cells as it is

highly correlated with increased Aldoc, Pax6 and Sox2 gene expression. Most interesting

to examine is cluster 6, the largest component, which represents development into mature

neurons. Within this component we can see a progression from just after intermediate

progenitors on the left (showing Eomes expression) to more mature neurons with higher

expression of Tbr1 and Sox5. With a standard autoencoder we cannot see progression

structure of this dataset. While some of the more global structure is captured, we fail

to see the data progression from intermediate progenitors to mature neurons. Learning a

graph allows us to create receptive fields e.g. clusters of neurons that correspond to specific
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structures within the data, in this case cell types. Within these neighborhoods, we can pick

up on the substructure within a single cell type, i.e. their developmental trajectory.

3.4.3 Computational Cost

Our method can be used to increase interpretability without much loss in representation

power. At low levels, GSR can be thought of as rearranging the activations so that they

become spatially coherent. As with other interpretability methods, GSR is not meant to

increase representation power, but create useful representations with low cost in power.

Since GSR does not require an information bottleneck such as in β-VAE, a GSR layer

can be very wide, while still being interpretable. In comparing loss of representation power,

GSR should be compared to other regularization methods, namely L1 and L2 penalties (See

Table 3.1). In all three cases we can see that a higher penalty reduces the model capacity.

GSR affects performance in approximately the same way as L1 and L2 regularizations do.

To confirm this, we ran a MNIST classifier and measured train and test accuracy with

10 replicates. Graph spectral regularization adds a bit more overhead than elementwise

Regularization Training accuracy Test Accuracy Coefficient

None 99.1± 0.3 97.5± 0.3 N/A
L1 98.9± 0.3 97.4± 0.4 10−4

L2 98.3± 0.3 98.0± 0.2 10−4

GSR (ours) 99.3± 0.3 98.0± 0.3 10−3

Table 3.1: MNIST classification training and test accuracies for coefficient selected using
cross validation over regularization weights in [10−7, 10−6, . . . , 10−2] for various regulariza-
tion methods with standard deviation over 10 replicates.

activation penalties. However, the added cost can be seen as containing one matrix vector

operation per pass. Empirically, GSR shows similar computational cost as other simple

regularizations such as L1 and L2. To compare costs, we used a Keras model with Tensorflow

backend [1] on a Nvidia Titan X GPU and a dual Intel(R) Xeon(R) CPU E5-2697 v4 @

2.30GHz, and with batchsize 256. we observed during training 233 milliseconds (ms) per

step with no regularization, 266ms for GSR, and 265ms for L2 penalties.

27



3.5 Conclusion

We have introduced a novel biologically inspired method for regularizing features of the

internal layers of dense neural networks to take the shape of a graph. We show that

coherent features emerge and can be used to interpret the underlying structure of the

dataset. Furthermore, when the intended graph is not known apriori, we have presented a

method for learning the graph structure, which learns a graph relevant to the data. This

regularization framework takes a step towards more interpretable neural networks, and has

applicability for future work seeking to reveal important structure in real-world biological

datasets as we have demonstrated here.
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Appendix

We use Leaky relus with a coefficient of 0.2 [137] for all layers except for the embedding

and output layers unless otherwise specified. We use the ADAM optimizer with default

parameters [102].

Laplacian Smoothing on an Autoencoder We use an autoencoder with five fully

connected layers for the hierarchical example. The layers have widths [50,50,6,50,50]. To

perform Laplacian smoothing on this autoencoder we add a term to the loss function. Let

ν be the activation vector on the embedding layer, then we add a penalty term ανTLν

where α is a weighting hyperparameter to the standard mean squared error loss. For the

biological example the layers have widths [50,50,20,50,50]. When not otherwise mentioned

we use a graph spectral regularization strength of α = 0.001.

MNIST Classifier Architecture The basic classifier that we use consists of two con-

volution and max pooling layers followed by the dense layer where we apply Laplacian

smoothing. We use the cross entropy loss to train the classification network in this case.

Note that while we use convolutions before this layer for the MNIST example, in principle,

techniques applied here could be applied to non image data by using only dense layers until

the Laplacian smoothing layer which constructs an image for each datapoint. Table a shows

the architecture when no convolutions are used. Table b exhibits the architecture when con-

volution and max pooling layers are used after the Laplacian smoothing layer constructs a

2D image.
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# type patch/stride depth output size

1 convolution 5x5/1 32 28x28x32
2 max pool 2x2/2 14x14x32
3 convolution 5x5/1 64 14x14x64
4 max pool 2x2/2 7x7x64
5 dense 64 8x8
6 dense 10 1x10

(a) Basic MNIST classifier used with and without Lapla-
cian smoothing on layer 5.

# type patch/stride depth output size

1 convolution 5x5/1 32 28x28x32
2 max pool 2x2/2 14x14x32
3 convolution 5x5/1 64 14x14x64
4 max pool 2x2/2 7x7x64
5 dense 64 8x8
6 convolution 3x3/1 16 8x8x16
7 max pool 2x2/2 4x4x16
8 convolution 3x3/1 16 4x4x16
9 max pool 2x2/2 2x2x16
10 convolution 3x3/1 16 2x2x16
11 dense 10 1x10

(b) MNIST classifier structure with convolutions follow-
ing the Laplacian smoothing layer (layer 6).

Table 3.2: Structure of MNIST classifiers with Laplacian smoothing
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Chapter 4

Geometric Scattering

4.1 Introduction

Geometric deep learning has recently emerged as an increasingly prominent branch of

machine learning in general, and deep learning in particular [28]. At the core of geo-

metric deep learning is the use of graph neural networks (GNNs) in general, and graph

convolutional networks (GCNs) in particular, which ensure neuron activations follow the

geometric organization of input data by propagating information across graph neighbor-

hoods [30, 51, 106, 86, 217, 3]. However, recent work has shown the difficulty in generaliz-

ing these methods to more complex structures, identifying common problems and phrasing

them in terms of oversmoothing [122], oversquashing [6] or underreaching [12].

Using graph signal processing terminology from Kipf and Welling [106], these issues can

be partly attributed to the limited construction of convolutional filters in many commonly

used GCN architectures. Inspired by the filters learned in convolutional neural networks,

GCNs consider node features as graph signals and aim to aggregate information from neigh-

boring nodes. For example, Kipf and Welling [106] presented a typical implementation of a

GCN with a cascade of averaging (essentially low pass) filters. We note that more general

variations of GCN architectures exist [51, 86, 217], which are capable of representing other

filters, but as investigated in Alon and Yahav [6], they too often have difficulty in learning

long-range connections.

Recently, an alternative approach was presented to provide deep geometric represen-

31



tation learning by generalizing Mallat’s scattering transform [139], originally proposed to

provide a mathematical framework for understanding convolutional neural networks, to

graphs [72, 70, 228] and manifolds [163]. The geometric scattering transform can represent

nodes or graphs based on the scattering or multi-scale diffusions, and differences between

scales of diffusions of graph signals (i.e., node features). Similar to traditional scattering,

which can be seen as a convolutional network with non-learned wavelet filters, geomet-

ric scattering is defined as a GNN with handcrafted graph filters, constructed as diffusion

wavelets over the input graph [47], which are then cascaded with pointwise absolute-value

nonlinearities. This wavelet cascade results in permutation equivariant node features that

are typically aggregated via statistical moments over the graph nodes, as explained in detail

in Sec. 4.3, to provide a permutation invariant graph-level representation. The efficacy of

geometric scattering features in graph processing tasks was demonstrated in Gao et al. [72],

with both supervised learning and data exploration applications. Moreover, their hand-

crafted design enables rigorous study of their properties, such as stability to deformations

and perturbations, and provides a clear understanding of the information extracted by

them, which by design (e.g., the cascaded band-pass filters) goes beyond low frequencies to

consider richer notions of regularity [71, 164].

However, while geometric scattering transforms provide effective universal feature ex-

tractors, their handcrafted design does not allow for the automatic task-driven representa-

tion learning that is so successful in traditional GNNs and neural networks more generally.

Here we focus on bridging the two frameworks, by incorporating the richer, multi-scale and

multi-frequency band features of geometric scattering into neural networks while allowing

them to be flexible and trainable. In essence, we introduce a geometric scattering module

which can be used within a larger neural network, while still allowing for fully connected

or other layers to be present in the network. Our module is called a learnable geometric

scattering (LEGS) module and has properties inherited from the scattering transform while

allowing the scales of the diffusion, and the laziness of the diffusion to be learned. Moreover,

we show that our framework is differentiable, allowing for backpropogation through it in a

standard reverse mode auto differentiation library.

The benefits of our construction over standard GNNs, as well as pure geometric scatter-
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ing, are discussed and demonstrated on graph classification and regression tasks in Sec. 4.6.

In particular, we find that our network maintains the robustness to small training sets

present in geometric scattering while improving classification on biological graph classifi-

cation and regression tasks, in particular, in tasks where the graphs have a large diame-

ter relative to their size, learnable scattering features improve performance over competing

methods. We show that our construction performs better on tasks that require whole-graph

representations with an emphasis on biochemical molecular graphs, where relatively large

diameters and non-planar structures usually limit the effectiveness of traditional GNNs.

We also show that our network maintains performance in social network and other node

classification tasks where state-of-the-art GNNs perform well.

4.2 Related Work

We note that efforts to improve the capture of long-range connections in graph representa-

tion learning have recently yielded several spectral approaches based on using the Lancoz

algorithm to approximate graph spectra [127], or based on learning in block Krylov sub-

spaces [135]. Such methods are complementary to the work presented here, in that their

spectral approximation can also be applied in the computation of geometric scattering when

considering very long range scales (e.g., via spectral formulation of graph wavelet filters).

However, we find that such approximations are not necessary in the datasets considered

here and in other recent work focusing on whole-graph tasks, where direct computation

of polynomials of the Laplacian is sufficient. Furthermore, recent attempts have also con-

sidered ensemble approaches with hybrid architectures that combine GCN and scattering

channels [143], albeit particularly focused on node-level tasks, considered on a single graph

at a time, rather than whole-graph tasks considered here on datasets comparing multiple

graphs. Such ensemble approaches are also complimentary to the proposed approach in that

hybrid architectures can also be applied in conjunction with the proposed LEGS module

here. We discuss and demonstrate this in Sec. 4.E of the Appendix.
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4.3 Preliminaries: Geometric Scattering

Let G = (V,E,w) be a weighted graph with V := {v1, . . . , vn} the set of nodes, E ⊂

{{vi, vj} ∈ V × V, i 6= j} the set of (undirected) edges and w : E → (0,∞) assigning

(positive) edge weights to the graph edges. Note that w can equivalently be considered as a

function of V × V , where we set the weights of non-adjacent node pairs to zero. We define

a graph signal as a function x : V → R on the nodes of G and aggregate them in a signal

vector x ∈ Rn with the ith entry being x[vi].

We define the weighted adjacency matrix W ∈ Rn×n of the graph G as

W [vi, vj ] :=


w(vi, vj) if {vi, vj} ∈ E,

0 otherwise,

and the degree matrix D ∈ Rn×n of G as D := diag(d1, . . . , dn) with di := deg(vi) :=∑n
j=1W [vi, vj ] being the degree of the node vi.

The geometric scattering transform [72] relies on a cascade of graph filters constructed

from a left stochastic diffusion matrix P := 1
2

(
In+WD−1

)
, which corresponds to transition

probabilities of a lazy random walk Markov process. The laziness of the process signifies that

at each step it has equal probability of either staying at the current node or transitioning to

a neighbor, where transition probabilities in the latter case are determined by (normalized)

edge weights. Scattering filters are then defined via the graph-wavelet matrices Ψj ∈ Rn×n

of order j ∈ N0, as

Ψ0 := In − P ,

Ψj := P 2j−1 − P 2j = P 2j−1(
In − P 2j−1)

, j ≥ 1. (4.1)

These diffusion wavelet operators partition the frequency spectrum into dyadic frequency

bands, which are then organized into a full wavelet filter bankWJ := {Ψj ,ΦJ}0≤j≤J , where

ΦJ := P 2J is a pure low-pass filter, similar to the one used in GCNs. It is easy to verify

that the resulting wavelet transform is invertible, since a simple sum of filter matrices inWJ

yields the identity. Moreover, as discussed in Perlmutter et al. [164], this filter bank forms
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a nonexpansive frame, which provides energy preservation guarantees as well as stability to

perturbations, and can be generalized to a wider family of constructions that encompasses

the variations of scattering transforms on graphs from Gama et al. [70, 71] and Zou and

Lerman [228].

Given the wavelet filter bank WJ , node-level scattering features are computed by stack-

ing cascades of bandpass filters and element-wise absolute value nonlinearities to form

Upx := Ψjm |Ψjm−1 . . . |Ψj2 |Ψj1x|| . . . |, (4.2)

indexed (or parametrized) by the scattering path p := (j1, . . . , jm) ∈ ∪m∈NNm0 that deter-

mines the filter scales captured by each scattering coefficient. Then, a whole-graph scat-

tering representation is obtained by aggregating together node-level features via statistical

moments over the nodes of the graph [72]. This construction yields the geometric scattering

features

Sp,qx :=
n∑
i=1

|Upx[vi]|q, (4.3)

indexed by the scattering path p and moment order q. Finally, we note that it can be

shown that the graph-level scattering transform Sp,q guarantees node-permutation invari-

ance, while Up is permutation equivariant [164, 72].

4.4 Adaptive Geometric Scattering Relaxation

The geometric scattering construction, described in Sec. 4.3, can be seen as a particular

GNN architecture with handcrafted layers, rather than learned ones. This provides a solid

mathematical framework for understanding the encoding of geometric information in GNNs,

as shown in Perlmutter et al. [164], while also providing effective unsupervised graph repre-

sentation learning for data exploration, which also has some advantages even in supervised

learning task, as shown in Gao et al. [72]. While the handcrafted design in Perlmutter

et al. [164] and Gao et al. [72] is not a priori amenable to task-driven tuning provided by

end-to-end GNN training, we note that the cascade in Eq. 4.3 does conform to a neural

network architecture suitable for backpropagation. Therefore, in this section, we show how
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and under what conditions a relaxation of the laziness of the random walk and the selection

of the scales preserves some of the useful mathematical properties established in Perlmutter

et al. [164]. We then establish in Sec. 4.6 the empirical benefits of learning the diffusion

scales over a purely handcrafted design.

We first note that the construction of the diffusion matrix P that forms the lowpass

filter used in the fixed scattering construction can be relaxed to encode adaptive laziness

by setting Pα := αIn + (1 − α)WD−1. Where α ∈ [1/2, 1) controls the reluctance of

the random walk to transition from one node to another. Setting α = 1/2 gives an equal

probability to stay in the same node as to transition to one of its neighbors. At this point,

we note that one difference between the diffusion lowpass filter here and the one typically

used in GCN and its variation is the symmetrization applied in Kipf and Welling [106].

However, Perlmutter et al. [164] established that for the original construction, this is only

a technical difference since P can be regarded as self-adjoint under an appropriate measure

which encodes degree variations in the graph. This is then used to generate a Hilbert space

L2(G,D−1/2) of graph signals with inner product 〈x,y〉D−1/2 := 〈D−1/2x,D−1/2y〉. The

following lemma shows that a similar property is retained for our adaptive lowpass filter

Pα.

Lemma 4.4.1. The matrix Pα is self-adjoint on the Hilbert space L2(G,D−1/2) from Perl-

mutter et al. [164].

We note that the self-adjointness shown here is interesting, as it links models that

use symmetric and asymmetric versions of the Laplacian or adjacency matrix. Namely,

Lemma 4.4.1 shows that the diffusion matrix P (which is column normalized but not row

normalized) is self-adjoint, as an operator, and can thus be considered as “symmetric” in

a suitable inner product space, thus establishing a theoretical link between these design

choices.

As a second relaxation, we propose to replace the handcrafted dyadic scales in Eq. 4.1

with an adaptive monotonic sequence of integer diffusion time scales 0 < t1 < · · · < tJ ,

which can be selected or tuned via training. Then, an adaptive filter bank is constructed
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as W ′J := {Ψ′j ,Φ′J}
J−1
j=0 , with

Φ′J := P tJ
α ,

Ψ′0 := In − P t1
α , (4.4)

Ψ′j := P
tj
α − P

tj+1
α , 1 ≤ j ≤ J − 1.

The following theorem shows that for any selection of scales, the relaxed construction of

W ′J yields a nonexpansive frame, similar to the result from Perlmutter et al. [164] shown

for the original handcrafted construction.

Theorem 4.4.2. There exist a constant C > 0 that only depends on t1 and tJ such that

for all x ∈ L2(G,D−1/2),

C‖x‖2
D−

1
2
6 ‖Φ′Jx‖2

D−
1
2

+

J∑
j=0

‖Ψ′jx‖2
D−

1
2
6 ‖x‖2

D−
1
2
,

where the norm considered here is the one induced by the space L2(G,D−1/2).

Intuitively, the upper (i.e., nonexpansive) frame bound implies stability in the sense

that small perturbations in the input graph signal will only result in small perturbations

in the representation extracted by the constructed filter bank. Further, the lower frame

bound ensures certain energy preservation by the constructed filter bank, thus indicating

the nonexpansiveness is not implemented in a trivial fashion (e.g., by constant features

independent of input signal).

In the next section we leverage the two relaxations described here to design a neural

network architecture for learning the configuration α, t1, . . . , tJ of this relaxed construction

via backpropagation through the resulting scattering filter cascade. The following theorem

establishes that for any such configuration, extracted from W ′J via Eqs. 4.2-4.3, is permu-

tation equivariant at the node-level and permutation invariant at the graph level. This

guarantees that the extracted (in this case learned) features indeed encode intrinsic graph

geometry rather than a priori indexation.

Theorem 4.4.3. Let U ′p and S′p,q be defined as in Eq. 4.2 and 4.3 (correspondingly), with
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the filters from W ′J with an arbitrary configuration 0 < α < 1, 0 < t1 < · · · < tJ . Then, for

any permutation Π over the nodes of G, and any graph signal x ∈ L2(G,D−1/2) we have

U ′pΠx = ΠU ′px and S′p,qΠx = S′p,qx, for p ∈ ∪m∈NNm0 , q ∈ N, where geometric scattering

implicitly considers here the node ordering supporting its input signal.

We note that the results in Lemma 4.4.1 and Theorems 4.4.2-4.4.3, as well as their

proofs, closely follow the theoretical framework proposed by Perlmutter et al. [164]. We

carefully account here for the relaxed learned configuration, which replaces the originally

handcrafted configuration there. For completeness, the adjusted proofs appear in Sec. 4.A

of the Appendix.

Figure 4.1: LEGS module learns to select the appropriate scattering scales from the data.

4.5 A Learnable Geometric Scattering Module

The adaptive geometric scattering construction presented in Sec. 4.4 is implemented here

in a data-driven way via a backpropagation-trainable module. Throughout this section,

we consider an input graph signal x ∈ Rn or, equivalently, a collection of graph signals

X ∈ Rn×N`−1 . The forward propagation of these signals can be divided into three major

submodules. First, a diffusion submodule implements the Markov process that forms the

basis of the filter bank and transform, while allowing learning of the laziness parameter α.

Then, a scattering submodule implements the filters and the corresponding cascade, while

allowing the learning of the scales t1, . . . , tJ . Finally, the aggregation module collects the

extracted features to provide a graph and produces the task-dependent output.
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The diffusion submodule. We build a set of m ∈ N subsequent diffusion steps of the

signal x by iteratively multiplying the diffusion matrix Pα to the left of the signal, resulting

in [
Pαx,P

2
αx,P

3
αx, . . . ,P

m
α x
]
,

Since Pα is often sparse, for efficiency reasons these filter responses are implemented via

an RNN structure consisting of m RNN modules. Each module propagates the incoming

hidden state ht−1, t = 1, . . . ,m with Pα with the readout ot equal to the produced hidden

state,

ht := Pαht−1, ot := ht.

Our architecture and theory enable the implementation of either trainable or nontrainable

α, which we believe will be useful for future work as indicated, for example, in Gao and Ji

[74].

The scattering submodule. Next, we consider the selection of J ≤ m diffusion scales

for the flexible filter bank construction with wavelets defined according to Eq. 4.5. We found

this was the most influential part of the architecture. We experimented with methods of

increasing flexibility:

1. Selection of {tj}J−1
j=1 as dyadic scales (as in Sec. 4.3 and Eq. 4.1), fixed for all datasets

(LEGS-FIXED),

2. Selection of each tj using softmax and sorting by j, learnable per model (LEGS-FCN

and LEGS-RBF, depending on output layer explained below).

For the scale selection, we use a selection matrix F ∈ RJ×m, where each row F(j,·), j =

1, . . . , J is dedicated to identifying the diffusion scale of the wavelet P
tj
α via a one-hot

encoding. This is achieved by setting

F := σ(Θ) =[σ(θ1), σ(θ2), . . . , σ(θJ)]T ,

where θj ∈ Rm constitute the rows of the trainable weight matrix Θ, and σ is the softmax

function. While this construction may not strictly guarantee an exact one-hot encoding, we
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assume that the softmax activations yield a sufficient approximation. Further, without loss

of generality, we assume that the rows of F are ordered according to the position of the

leading “one” activated in every row. In practice, this can be easily enforced by reordering

the rows. We now construct the filter bank W̃F := {Ψ̃j , Φ̃J}J−1
j=0 with the filters

Φ̃Jx =

m∑
t=1

F(J,t)P
t
αx,

Ψ̃0x = x−
m∑
t=1

F(1,t)P
t
αx, (4.5)

Ψ̃jx =

m∑
t=1

[
F(j,t)P

t
αx− F(j+1,t)P

t
αx
]
, 1 ≤ j ≤ J − 1,

matching and implementing the construction of W ′J (Eq. 4.4).

The aggregation submodule. While many approaches may be applied to aggregate

node-level features into graph-level features such as max, mean, sum pooling, and the more

powerful TopK [74] or attention pooling [205], we follow the statistical-moment aggregation

explained in Secs. 4.3-4.4 motivated by Gao et al. [72], Perlmutter et al. [164] and leave

exploration of other pooling methods to future work.

Incorporating LEGS into a larger neural network As shown in Gao et al. [72] on

graph classification, this aggregation works particularly well in conjunction with support

vector machines (SVMs) based on the radial basis function (RBF) kernel. Here, we consider

two configurations for the task-dependent output layer of the network, either using two

fully connected layers after the learnable scattering layers, which we denote LEGS-FCN,

or using a modified RBF network [29], which we denote LEGS-RBF, to produce the final

classification.

The latter configuration more accurately processes scattering features as shown in Ta-

ble 4.2. Our RBF network works by first initializing a fixed number of movable anchor

points. Then, for every point, new features are calculated based on the radial distances to

these anchor points. In previous work on radial basis networks these anchor points were

initialized independent of the data. We found that this led to training issues if the range
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of the data was not similar to the initialization of the centers. Instead, we first use a batch

normalization layer to constrain the scale of the features and then pick anchors randomly

from the initial features of the first pass through our data. This gives an RBF-kernel

network with anchors that are always in the range of the data. Our RBF layer is then

RBF(x) = φ(‖BatchNorm(x)− c‖) with φ(x) = e−‖x‖
2
.

Backpropagation through the LEGS module The LEGS module is fully suitable for

incorporation in any neural network architecture and can be backpropogated through. To

show this we write the partial derivatives with respect to the LEGS module parameters α,

Θ, and W here. The gradient of the filter Ψ̃j with respect to α can be written as

∂Ψ̃j

∂α
=

m∑
t=1

[
(Fj,t − Fj+1,t)

×
t∑

k=1

P k−1
α (In −WD−1)P t−k

α

]
. (4.6)

Gradients with respect to scale weights θk, k ∈ [1, . . .m], where σ is the softmax function,

can be written as

∂Ψ̃j

∂Θk,t
=


P t
ασ(θj)t(1− σ(θj))t if k = j,

P t
ασ(θj)tσ(θk)t if k = j + 1,

0n×n else.

(4.7)

Finally, the gradient with respect to the adjacency matrix entry Wab, where we denote Jab

the matrix with Jab(a,b) = 1 and all other entries zero, can be written as

∂Ψ̃j

∂Wab
= (1− α)

m∑
t=1

[
(Fj,t − Fj+1,t)×

t∑
k=1

P k−1
α (JabD−1)P t−k

α

]
. (4.8)

Gradients of filters Φ̃J and Ψ̃0, which are simple modifications of the partial derivatives

of Ψ̃j and derivations of these gradients can be found in Sec. 4.B of the Appendix.
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4.6 Empirical Results

Here we investigate the LEGS module on whole graph classification and graph regression

tasks, that arise in a variety of contexts, with emphasis on the more complex biochemical

datasets. We focus on biochemical graph datasets as they represent a less prominent but

equally important challenge in the field of graph learning as compared with social network

datasets. Unlike other types of data, biochemical graphs do not exhibit the small-world

structure of social graphs and may have large graph diameters for their size. Further, the

connectivity patterns of biomolecules are very irregular due to 3D folding and long-range

connections, and thus ordinary local node aggregation methods may miss such connectivity

differences.

Table 4.1: Dataset statistics, diameter, nodes, edges, clustering coefficient (CC) averaged
over all graphs. Split into bio-chemical and social network types.

# Graphs # Classes Diameter Nodes Edges CC

DD 1178 2 19.81 284.32 715.66 0.48
ENZYMES 600 6 10.92 32.63 62.14 0.45
MUTAG 188 2 8.22 17.93 19.79 0.00
NCI1 4110 2 13.33 29.87 32.30 0.00
NCI109 4127 2 13.14 29.68 32.13 0.00
PROTEINS 1113 2 11.62 39.06 72.82 0.51
PTC 344 2 7.52 14.29 14.69 0.01

COLLAB 5000 3 1.86 74.49 2457.22 0.89
IMDB-B 1000 2 1.86 19.77 96.53 0.95
IMDB-M 1500 3 1.47 13.00 65.94 0.97
REDDIT-B 2000 2 8.59 429.63 497.75 0.05
REDDIT-12K 11929 11 9.53 391.41 456.89 0.03
REDDIT-5K 4999 5 10.57 508.52 594.87 0.03

4.6.1 Whole Graph Classification

We perform whole graph classification by using eccentricity (max distance of a node to

other nodes) and clustering coefficient (percentage of links between the neighbors of the

node compared to a clique) as node features as are used in Gao et al. [72]. We compare

against graph convolutional networks (GCN) [106], GraphSAGE [86], graph attention net-
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Table 4.2: Mean ± std. over 10 test sets on bio-chemical (top) and social network (bottom)
datasets.

LEGS-RBF LEGS-FCN LEGS-FIXED GCN GraphSAGE GAT GIN GS-SVM Baseline

DD 72.58 ± 3.35 72.07 ± 2.37 69.09 ± 4.82 67.82 ± 3.81 66.37 ± 4.45 68.50 ± 3.62 42.37 ± 4.32 72.66 ± 4.94 75.98 ± 2.81
ENZYMES 36.33 ± 4.50 38.50 ± 8.18 32.33 ± 5.04 31.33 ± 6.89 15.83 ± 9.10 25.83 ± 4.73 36.83 ± 4.81 27.33 ± 5.10 20.50 ± 5.99
MUTAG 33.51 ± 4.34 82.98 ± 9.85 81.84 ± 11.24 79.30 ± 9.66 81.43 ± 11.64 79.85 ± 9.44 83.57 ± 9.68 85.09 ± 7.44 79.80 ± 9.92
NCI1 74.26 ± 1.53 70.83 ± 2.65 71.24 ± 1.63 60.80 ± 4.26 57.54 ± 3.33 62.19 ± 2.18 66.67 ± 2.90 69.68 ± 2.38 56.69 ± 3.07
NCI109 72.47 ± 2.11 70.17 ± 1.46 69.25 ± 1.75 61.30 ± 2.99 55.15 ± 2.58 61.28 ± 2.24 65.23 ± 1.82 68.55 ± 2.06 57.38 ± 2.20
PROTEINS 70.89 ± 3.91 71.06 ± 3.17 67.30 ± 2.94 74.03 ± 3.20 71.87 ± 3.50 73.22 ± 3.55 75.02 ± 4.55 70.98 ± 2.67 73.22 ± 3.76
PTC 57.26 ± 5.54 56.92 ± 9.36 54.31 ± 6.92 56.34 ± 10.29 55.22 ± 9.13 55.50 ± 6.90 55.82 ± 8.07 56.96 ± 7.09 56.71 ± 5.54

COLLAB 75.78 ± 1.95 75.40 ± 1.80 72.94 ± 1.70 73.80 ± 1.73 76.12 ± 1.58 72.88 ± 2.06 62.98 ± 3.92 74.54 ± 2.32 64.76 ± 2.63
IMDB-BINARY 64.90 ± 3.48 64.50 ± 3.50 64.30 ± 3.68 47.40 ± 6.24 46.40 ± 4.03 45.50 ± 3.14 64.20 ± 5.77 66.70 ± 3.53 47.20 ± 5.67
IMDB-MULTI 41.93 ± 3.01 40.13 ± 2.77 41.67 ± 3.19 39.33 ± 3.13 39.73 ± 3.45 39.73 ± 3.61 38.67 ± 3.93 42.13 ± 2.53 39.53 ± 3.63
REDDIT-BINARY 86.10 ± 2.92 78.15 ± 5.42 85.00 ± 1.93 81.60 ± 2.32 73.40 ± 4.38 73.35 ± 2.27 71.40 ± 6.98 85.15 ± 2.78 69.30 ± 5.08
REDDIT-MULTI-12K 38.47 ± 1.07 38.46 ± 1.31 39.74 ± 1.31 42.57 ± 0.90 32.17 ± 2.04 32.74 ± 0.75 24.45 ± 5.52 39.79 ± 1.11 22.07 ± 0.98
REDDIT-MULTI-5K 47.83 ± 2.61 46.97 ± 3.06 47.17 ± 2.93 52.79 ± 2.11 45.71 ± 2.88 44.03 ± 2.57 35.73 ± 8.35 48.79 ± 2.95 36.41 ± 1.80

work (GAT) [205], graph isomorphism network (GIN) [217], Snowball network [135], and

fixed geometric scattering with a support vector machine classifier (GS-SVM) as in Gao

et al. [72], and a baseline which is a 2-layer neural network on the features averaged across

nodes (disregarding graph structure). These comparisons are meant to inform when in-

cluding learnable graph scattering features are helpful in extracting whole graph features.

Specifically, we are interested in the types of graph datasets where existing graph neural

network performance can be improved upon with scattering features. We evaluate these

methods across 7 biochemical datasets and 6 social network datasets where the goal is to

classify between two or more classes of compounds with hundreds to thousands of graphs

and tens to hundreds of nodes (See Table 4.1). For more specific information on individual

datasets see Appendix 4.C. We use 10-fold cross validation on all models which is elaborated

on in Appendix 4.D. For an ensemble of the LEGS module with other graph neural networks

as first explored with a fixed geometric scattering transform in Scattering-GCN [143] see

Appendix 4.E.

LEGS outperforms on biochemical datasets. Most work on graph neural networks

has focused on social networks which have a well-studied structure. However, biochemical

graphs that represent molecules and tend to be overall smaller and less connected than social

networks (see Table 4.1). In particular, we find that LEGS outperforms other methods by

a significant margin on biochemical datasets with relatively small but high diameter graphs

(NCI1, NCI109, ENZYMES, PTC), as shown in Table 4.2. On extremely small graphs we

find that GS-SVM performs best, which is expected as other methods with more parameters
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can easily overfit the data. We reason that the performance increase exhibited by LEGS

module networks, and to a lesser extent GS-SVM, on these biochemical graphs is due the

ability of geometric scattering to compute complex connectivity features via its multiscale

diffusion wavelets. Thus, methods that rely on a scattering construction would in general

perform better, with the flexibility and trainability of the LEGS module giving it an edge

on most tasks.

LEGS performs well on social network datasets and considerably improves per-

formance in ensemble models. In Table 4.2, we see that on the social network datasets

LEGS performs well. Overlooking the fixed scattering transform GS-SVM, which was tuned

in Gao et al. [72] with a focus on these particular social network datasets, a LEGS module

architecture is best on three out of the six social datasets and second best on the other

three. If we also consider combining LEGS module features with GCN features the LEGS

module performs the best on five out of six of the social network datasets. Across all

datasets, an ensemble model considerably increases accuracy over GCN (see Table 4.8 in

Appendix 4.E). This underlines the capabilities of the LEGS module, not only as an isolated

model, but also as a tool for powerful hybrid GNN architectures. Similar to Min et al. [143],

this supports the claim that the LEGS module (due to geometric scattering) is sensitive to

complementary regularity over graphs, compared to many traditional GNNs.

LEGS preserves enzyme exchange preferences while increasing performance.

One advantage of geometric scattering over other graph embedding techniques lies in the

rich information present within the scattering feature space. This was demonstrated in [72]

where it was shown that the embeddings created through fixed geometric scattering can

be used to accurately infer inter-graph relationships. Scattering features of enzyme graphs

within the ENZYMES dataset [26] possessed sufficient global information to recreate the

enzyme class exchange preferences observed empirically by Cuesta et al. [49], using only

linear methods of analysis, and despite working with a much smaller and artificially bal-

anced dataset. We demonstrate here that LEGS retains similar descriptive capabilities, as

shown in Figure 4.2 via chord diagrams where each exchange preference between enzyme
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Figure 4.2: Enzyme class exchange preferences empirically observed in Cuesta et al. [49],
and estimated from LEGS and GCN embeddings.

classes [estimated as suggested in 72] is represented as a ribbon of the corresponding size.

Our results here (and in Table 4.7, which provides complementary quantitative compari-

son) show that, with relaxations on the scattering parameters, LEGS-FCN achieves better

classification accuracy than both LEGS-FIXED and GCN (see Table 4.2) while also retain-

ing a more descriptive embedding that maintains the global structure of relations between

enzyme classes. We ran LEGS-FIXED and LEGS-FCN on the ENZYMES dataset. LEGS-

FCN which allows the diffusion scales to be learned. For comparison, we also ran a standard

GCN whose graph embeddings were obtained via mean pooling. To infer enzyme exchange

preferences from their embeddings, we followed Gao et al. [72] in defining the distance from

an enzyme e to the enzyme class ECj as dist(e,ECj) := ‖ve − projCj (ve)‖, where vi is the

embedding of e, and Cj is the PCA subspace of the enzyme feature vectors within ECj .

The distance between the enzyme classes ECi and ECj is the average of the individual dis-

tances, mean{dist(e,ECj) : e ∈ ECi}. From here, the affinity between two enzyme classes

is computed as pref(ECi,ECj) = wi/min(
Di,i
Di,j

,
Dj,j
Dj,i

), where wi is the percentage of enzymes

in class i which are closer to another class than their own, and Di,j is the distance between

ECi and ECj .

Robustness to reduced training set size. We remark that similar to the robustness

shown in Gao et al. [72] for handcrafted scattering, LEGS-based networks are able to main-

tain accuracy even when the training set size is shrunk to as low as 20% of the dataset,
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with a median decrease of 4.7% accuracy as when 80% of the data is used for training, as

discussed in the supplement (see Table 4.5).

4.6.2 Graph Regression

Table 4.3: Train and test set mean squared error on CASP GDT regression task over three
seeds.

(µ± σ) Train MSE Test MSE

LEGS-FCN 134.34 ± 8.62 144.14 ± 15.48
LEGS-RBF 140.46 ± 9.76 152.59 ± 14.56
LEGS-FIXED 136.84 ± 15.57 160.03 ± 1.81
GCN 289.33 ± 15.75 303.52 ± 18.90
GraphSAGE 221.14 ± 42.56 219.44 ± 34.84
GIN 221.14 ± 42.56 219.44 ± 34.84
Baseline 393.78 ± 4.02 402.21 ± 21.45

We next evaluate learnable scattering on two graph regression tasks, the QM9 [78, 215]

graph regression dataset, and a new task from the critical assessment of structure prediction

(CASP) challenge [149]. In the CASP task, the main objective is to score protein structure

prediction/simulation models in terms of the discrepancy between their predicted structure

and the actual structure of the protein (which is known a priori). The accuracy of such

3D structure predictions are evaluated using a variety of metrics, but we focus on the

global distance test (GDT) score [144]. The GDT score measures the similarity between

tertiary structures of two proteins with amino-acid correspondence. A higher score means

two structures are more similar. For a set of predicted 3D structures for a protein, we would

like to score their quality as quantified by the GDT score.

For this task we use the CASP12 dataset [149] and preprocess the data similarly to

Ingraham et al. [94], creating a KNN graph between proteins based on the 3D coordinates

of each amino acid. From this KNN graph we regress against the GDT score. We evaluate

on 12 proteins from the CASP12 dataset and choose random (but consistent) splits with

80% train, 10% validation, and 10% test data out of 4000 total structures. We are interested

in structure similarity and use no non-structural node features.
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Figure 4.3: CASP dataset LEGS-FCN % improvement over GCN in MSE of GDT prediction
vs. Average GDT score.

Table 4.4: Mean ± std. over four runs of mean squared error over 19 targets for the QM9
dataset, lower is better.

(µ± σ) Test MSE

LEGS-FCN 0.216 ± 0.009
LEGS-FIXED 0.228 ± 0.019
GraphSAGE 0.524 ± 0.224
GCN 0.417 ± 0.061
GIN 0.247 ± 0.037
Baseline 0.533 ± 0.041

LEGS outperforms on all CASP targets Across all CASP targets we find that LEGS-

based architectures significantly outperforms GNN and baseline methods (See Table 4.6).

This performance improvement is particularly stark on the easiest structures (measured by

average GDT) but is consistent across all structures. In Figure 4.3 we show the relationship

between percent improvement of LEGS over the GCN model and the average GDT score

across the target structures. We draw attention to target t0879, where LEGS shows the

greatest improvement over other methods. This target has long-range dependencies [154]

as it exhibits metal coupling [123] creating long-range connections over the sequence. Since

other methods are unable to model these long-range connections LEGS is particularly im-

portant on these more difficult to model targets.

LEGS outperforms on the QM9 dataset We evaluate the performance of LEGS-

based networks on the quantum chemistry dataset QM9 [78, 215], which consists of 130,000

molecules with ∼18 nodes per molecule. We use the node features from Gilmer et al. [78],
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with the addition of eccentricity and clustering coefficient features, and ignore the edge

features. We whiten all targets to have zero mean and unit standard deviation. We train

each network against all 19 targets and evaluate the mean squared error on the test set with

mean and std. over four runs. We find that learning the scales improves the overall MSE,

and particularly improves the results over difficult targets (see Table 4.4 for overall results

and Table 4.9 for results by target). Indeed, on more difficult targets (i.e., those with large

test error) LEGS-FCN is able to perform better, where on easy targets GIN is the best.

Overall, scattering features offer a robust signal over many targets, and while perhaps less

flexible (by construction), they achieve good average performance with significantly fewer

parameters.

4.7 Conclusion

In this work we introduced a flexible geometric scattering module, that serves as an al-

ternative to standard graph neural network architectures and is capable of learning rich

multi-scale features. Our learnable geometric scattering module allows a task-dependent

network to choose the appropriate scales of the multiscale graph diffusion wavelets that

are part of the geometric scattering transform. We show that incorporation of this mod-

ule yields improved performance on graph classification and regression tasks, particularly

on biochemical datasets, while keeping strong guarantees on extracted features. This also

opens the possibility to provide additional flexibility to the module to enable node-specific

or graph-specific tuning via attention mechanisms, which are an exciting future direction,

but out of scope for the current work.
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Appendix

4.A Proofs for Section 4.4

4.A.1 Proof of Lemma 4.4.1

Let Mα = D−1/2PαD
1/2 then it can be verified that Mα is a symmetric conjugate of Pα,

and by construction is self-adjoint with respect to the standard inner product of L2(G). Let

x,y ∈ L2(G,D−1/2) then we have

〈Pαx,y〉D−1/2 = 〈D−1/2Pαx,D
−1/2y〉

= 〈D−1/2D1/2MαD
−1/2x,D−1/2y〉

= 〈MαD
−1/2x,D−1/2y〉

= 〈D−1/2x,MαD
−1/2y〉

= 〈D−1/2x,D−1/2D1/2MαD
−1/2y〉

= 〈D−1/2x,D−1/2Pαy〉

= 〈x,Pαy〉D−1/2 ,

which gives the result of the lemma.

4.A.2 Proof of Theorem 4.4.2

As shown in the previous proof (Sec. 4.A.1), Pα has a symmetric conjugate Mα. Given

the eigendecomposition Mα = QΛQT , we can write P t
α = D1/2QΛtQTD−1/2, giving the

eigendecomposition of the propagated diffusion matrices. Furthermore, it can be verified

that the eigenvalues on the diagonal of Λ are nonnegative. Briefly, this results from graph
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Laplacian eigenvalues being within the range [0, 1], which means those of WD−1 are in

[−1, 1], which combined with 1/2 ≤ α ≤ 1 result in λi := [Λ]ii ∈ [0, 1] for every j. Next,

given this decomposition we can write

Φ′J = D1/2QΛtJQTD−1/2,

Ψ′j = D1/2Q(Λtj − Λtj+1)QTD−1/2, 0 ≤ j ≤ J − 1,

where we set t0 = 0 to simplify notations. Then, we have

‖Φ′Jx‖2D−1/2 = 〈Φ′Jx,Φ′Jx〉D−1/2

= 〈D−1/2D1/2QΛtJQTD−1/2x, D−1/2D1/2QΛtJQTD−1/2x〉

= xTD−1/2QΛtJQTQΛtJQTD−1/2x = (xTD−1/2QΛtJ )(ΛtJQTD−1/2x)

= ‖ΛtJQTD−1/2x‖22.

Further, since Q is orthogonal (as it is constructed from an eigenbasis of a symmetric

matrix), if we consider a change of variable to y = QTD−1/2x, we have ‖x‖2
D−1/2 =

‖D−1/2x‖22 = ‖y‖22 while ‖Φ′Jx‖2D−1/2 = ‖ΛtJy‖22. Similarly, we can also reformulate the

operation of other filters in terms of diagonal matrices applied to y asW ′J as ‖Ψ′jx‖2D−1/2 =

‖(Λtj − Λtj+1)y‖22.

Given the reformulation in terms of y and standard L2(G), we can now write

‖ΛtJy‖22 +

J−1∑
j=0

‖(Λtj − Λtj+1)y‖22 =

n∑
i=1

y2
i ·
(
λ2tJ +

∑J−1

j=0
(λ
tj
i − λ

tj+1

i )2

)
.

Then, since 0 ≤ λi ≤ 1 and 0 = t0 < t1 < · · · < tJ we have

λ2tJ +
J−1∑
j=0

(λ
tj
i − λ

tj+1

i )2 ≤

λtJ +
J−1∑
j=0

λ
tj
i − λ

tj+1

i

2

=
(
λtJ + λt0i − λ

tJ
i

)2
= 1,

which yields the upper bound ‖ΛtJy‖22 +
∑J−1

j=0 ‖(Λtj − Λtj+1)y‖22 ≤ ‖y‖22. On the other
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hand, since t1 > 0 = t0, then we also have

λ2tJ +
J−1∑
j=0

(λ
tj
i − λ

tj+1

i )2 ≥ λ2tJ + (1− λt1i )2,

and therefore, by setting C := min0≤ξ≤1(ξ2tJ + (1 − ξt1)2) > 0, whose positivity is not

difficult to verify, we get the lower bound ‖ΛtJy‖22 +
∑J−1

j=0 ‖(Λtj − Λtj+1)y‖22 ≥ C‖y‖22.

Finally, applying the reverse change of variable to x and L2(G,D−1/2) yields the result of

the theorem.

4.A.3 Proof of Theorem 4.4.3

Denote the permutation group on n elements as Sn, then for a permutation Π ∈ Sn

we let G = Π(G) be the graph obtained by permuting the vertices of G with Π. The

corresponding permutation operation on a graph signal x ∈ L2(G,D−1/2) gives a sig-

nal Πx ∈ L2(G,D−1/2), which we implicitly considered in the statement of the theorem,

without specifying these notations for simplicity. Rewriting the statement of the theorem

more rigorously with the introduced notations, we aim to show that U
′
pΠx = ΠU ′px and

S
′
p,qΠx = S′p,qx under suitable conditions, where the operation U ′p from G on the permuted

graph G is denoted here by U
′
p and likewise for S′p,q we have S

′
p,q.

We start by showing U ′p is permutation equivariant. First, we notice that for any Ψj ,

0 < j < J we have that ΨjΠx = ΠΨjx, as for 1 ≤ j ≤ J − 1,

ΨjΠx = (ΠP tjΠT −ΠP tj+1ΠT )Πx

= Π(P tj − P tj+1)x

= ΠΨjx.

Similar reasoning also holds for j ∈ {0, J}. Further, notice that for the element-wise nature

of the absolute value nonlinearity yields |Πx| = Π|x| for any permutation matrix Π. Using
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these two observations, it follows inductively that

U
′
pΠx :=Ψ′jm |Ψ

′
jm−1

. . . |Ψ′j2 |Ψ
′
j1Πx|| . . . |

=Ψ′jm |Ψ
′
jm−1

. . . |Ψ′j2Π|Ψ′j1x|| . . . |
...

=ΠΨ′jm |Ψ
′
jm−1

. . . |Ψ′j2 |Ψ
′
j1x|| . . . |

=ΠU ′px.

To show S′p,q is permutation invariant, first notice that for any statistical moment q > 0,

we have |Πx|q = Π|x|q and further as sums are commutative,
∑

j(Πx)j =
∑

j xj . We then

have

S
′
p,qΠx =

n∑
i=1

|U ′pΠx[vi]|q =

n∑
i=1

|ΠU ′px[vi]|q =

n∑
i=1

|U ′px[vi]|q = S′p,qx,

which, together with the previous result, completes the proof of the theorem.

4.B Gradients of the LEGS module

Here we analyze the gradients of the LEGS module with respect to its outputs. As depicted

in Fig. 4.1, the LEGS module has 3 inputs, W , Θ, and α, and J permutation equivariant

output matrices W̃F = {Ψ̃j , Φ̃J}J−1
j=0 . Here we compute partial derivatives of Ψ̃j for 1 ≤

j ≤ J − 1. The other related gradients of Ψ̃0 and Φ̃J are easily deducible from these.

The following partial derivatives and an application of the train rule yield the gradients
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presented in the main paper:

∂Ψ̃j

∂Fk,t
=


P t
α if k = j,

−P t
α if k = j + 1,

0n×n else,

(4.9)

∂Ψ̃j

∂P t
α

= (Fj,t − Fj+1,t), (4.10)

∂Fk,t
Θk,t

=


σ(θj)(1− σ(θj)) if k = j,

−σ(θj)σ(θk) else,

(4.11)

∂P t
α

α
=

t∑
k=1

P k−1
α (In −WD−1)P t−k

α , (4.12)

∂P t
α

Wab
= (1− α)

t∑
k=1

P k−1
α (JabD−1)P t−k

α . (4.13)

4.C Datasets

In this section we further analyze individual datasets. Relating composition of the dataset

as shown in Table 4.1 to the relative performance of our models as shown in Table 4.2.

DD [55]: Is a dataset extracted from the protein data bank (PDB) of 1178 high resolution

proteins. The task is to distinguish between enzymes and non-enzymes. Since these are

high resolution structures, these graphs are significantly larger than those found in our other

biochemical datasets with a mean graph size of 284 nodes with the next largest biochemical

dataset with a mean size of 39 nodes.

ENZYMES [26]: Is a dataset of 600 enzymes divided into 6 balanced classes of 100

enzymes each. As we analyzed in the main text, scattering features are better able to pre-

serve the structure between classes. LEGS-FCN slightly relaxes this structure but improves

accuracy from 32 to 39% over LEGS-FIXED.

NCI1, NCI109 [211]: Contains slight variants of 4100 chemical compounds encoded as

graphs. Each compound is separated into one of two classes based on its activity against
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non-small cell lung cancer and ovarian cancer cell lines. Graphs in this dataset are 30 nodes

with a similar number of edges. This makes for long graphs with high diameter.

PROTEINS [26]: Contains 1178 protein structures with the goal of classifying enzymes

vs. non enzymes. GCN outperforms all other models on this dataset, however the Baseline

model, where no structure is used also performs very similarly. This suggests that the graph

structure within this dataset does not add much information over the structure encoded in

the eccentricity and clustering coefficient.

PTC [196]: Contains 344 chemical compound graphs divided into two classes based on

whether or not they cause cancer in rats. This dataset is very difficult to classify without

features however LEGS-RBF and LEGS-FCN are able to capture the long range connections

slightly better than other methods.

COLLAB [218]: 5000 ego-networks of different researchers from high energy physics,

condensed matter physics or astrophysics. The goal is to determine which field the research

belongs to. The GraphSAGE model performs best on this dataset although the LEGS-RBF

network performs nearly as well. Ego graphs have a very small average diameter. Thus

shallow networks can perform quite well on them as is the case here.

IMDB [218]: For each graph, nodes represent either actresses or actors and there is an

edge between them if they are in the same movie. These graphs are also ego graphs around

specific actors. IMDB-BINARY classifies between action and romance genres. IMDB-

MULTI classifies between 3 classes. Somewhat surprisingly GS-SVM performs the best

with other LEGS networks close behind. This could be due to oversmoothing on the part

of GCN and GraphSAGE when the graphs are so small.

REDDIT [218]: Graphs in REDDIT-BINARY/MULTI-5K/MULTI-12K datasets each

graph represents a discussion thread where nodes correspond to users and there is an edge

between two nodes if one replied to the other’s comment. The task is to identify which

subreddit a given graph came from. On these datasets GCN outperforms other models.
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QM9 [78, 215]: Graphs in the QM9 dataset each represent chemicals with 18 atoms.

Regression targets represent chemical properties of the molecules.

Table 4.5: Mean ± std. over test set selection on cross-validated LEGS-RBF Net with
reduced training set size.

Train, Val, Test % 80%, 10%, 10% 70%, 10%, 20% 40%, 10%, 50% 20%, 10%, 70%

COLLAB 75.78 ± 1.95 75.00 ± 1.83 74.00 ± 0.51 72.73 ± 0.59
DD 72.58 ± 3.35 70.88 ± 2.83 69.95 ± 1.85 69.43 ± 1.24
ENZYMES 36.33 ± 4.50 34.17 ± 3.77 29.83 ± 3.54 23.98 ± 3.32
IMDB-BINARY 64.90 ± 3.48 63.00 ± 2.03 63.30 ± 1.27 57.67 ± 6.04
IMDB-MULTI 41.93 ± 3.01 40.80 ± 1.79 41.80 ± 1.23 36.83 ± 3.31
MUTAG 33.51 ± 4.34 33.51 ± 1.14 33.52 ± 1.26 33.51 ± 0.77
NCI1 74.26 ± 1.53 74.38 ± 1.38 72.07 ± 0.28 70.30 ± 0.72
NCI109 72.47 ± 2.11 72.21 ± 0.92 70.44 ± 0.78 68.46 ± 0.96
PROTIENS 70.89 ± 3.91 69.27 ± 1.95 69.72 ± 0.27 68.96 ± 1.63
PTC 57.26 ± 5.54 57.83 ± 4.39 54.62 ± 3.21 55.45 ± 2.35
REDDIT-BINARY 86.10 ± 2.92 86.05 ± 2.51 85.15 ± 1.77 83.71 ± 0.97
REDDIT-MULTI-12K 38.47 ± 1.07 38.60 ± 0.52 37.55 ± 0.05 36.65 ± 0.50
REDDIT-MULTI-5K 47.83 ± 2.61 47.81 ± 1.32 46.73 ± 1.46 44.59 ± 1.02

4.D Training Details

We train all models for a maximum of 1000 epochs with an initial learning rate of 1e−4

using the ADAM optimizer [103]. We terminate training if validation loss does not improve

for 100 epochs testing every 10 epochs. Our models are implemented with Pytorch [158]

and Pytorch geometric. Models were run on a variety of hardware resources. For all models

we use q = 4 normalized statistical moments for the node to graph level feature extraction

and m = 16 diffusion scales in line with choices in [72].

4.D.1 Cross Validation Procedure

For all datasets we use 10-fold cross validation with 80% training data 10% validation data

and 10% test data for each model. We first split the data into 10 (roughly) equal partitions.

For each model we take exactly one of the partitions to be the test set and one of the

remaining nine to be the validation set. We then train the model on the remaining eight

partitions using the cross-entropy loss on the validation for early stopping checking every

ten epochs. For each test set, we use majority voting of the nine models trained with that
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Table 4.6: Test set mean squared error on CASP GDT regression task across targets over
3 non-overlapping test sets.

LEGS-RBF LEGS-FCN LEGS-FIXED GCN GraphSAGE GIN Baseline

t0860 197.68 ± 34.29 164.22 ± 10.28 206.20 ± 28.46 314.90 ± 29.66 230.45 ± 79.72 262.35 ± 66.88 414.41 ± 26.96
t0868 131.42 ± 8.12 127.71 ± 14.26 178.45 ± 5.64 272.14 ± 26.34 191.08 ± 21.96 170.05 ± 27.26 411.98 ± 57.39
t0869 106.69 ± 9.97 132.12 ± 31.37 104.47 ± 14.16 317.22 ± 12.75 244.38 ± 40.58 217.02 ± 57.01 393.12 ± 48.70
t0872 144.11 ± 24.88 148.20 ± 23.63 134.48 ± 8.25 293.96 ± 19.00 221.13 ± 28.74 240.89 ± 24.17 374.48 ± 33.70
t0879 89.00 ± 44.94 80.14 ± 16.21 64.63 ± 15.92 309.23 ± 69.40 172.41 ± 73.07 147.77 ± 15.72 364.79 ± 144.32
t0900 193.74 ± 10.78 171.05 ± 25.41 158.56 ± 9.87 254.11 ± 18.63 209.07 ± 11.90 265.77 ± 79.99 399.16 ± 83.48
t0912 113.00 ± 22.31 169.55 ± 27.35 150.70 ± 8.53 227.17 ± 22.11 192.28 ± 39.45 271.30 ± 28.89 406.25 ± 31.42
t0920 80.46 ± 14.98 136.94 ± 36.43 84.83 ± 19.70 361.19 ± 71.25 261.72 ± 59.67 191.86 ± 37.85 398.22 ± 25.60
t0921 187.89 ± 46.15 165.97 ± 42.39 142.97 ± 27.09 382.69 ± 20.27 260.49 ± 16.09 207.19 ± 24.84 363.92 ± 35.79
t0922 254.83 ± 91.28 110.54 ± 43.99 227.73 ± 26.41 366.72 ± 8.10 290.71 ± 7.22 130.46 ± 11.64 419.14 ± 45.49
t0942 188.55 ± 11.10 167.53 ± 22.01 137.21 ± 7.43 371.31 ± 9.90 233.78 ± 84.95 254.38 ± 47.21 393.03 ± 24.93
t0944 146.59 ± 8.41 138.67 ± 50.36 245.79 ± 58.16 263.03 ± 9.43 199.40 ± 51.11 157.90 ± 2.57 404.12 ± 40.82

Table 4.7: Quantified distance between the empirically observed enzyme class exchange
preferences of [49] and the class exchange preferences inferred from LEGS-FIXED, LEGS-
FCN, and a GCN. We measure the cosine distance between the graphs represented by the
chord diagrams in Figure 4.2. As before, the self-affinities were discarded. LEGS-Fixed
reproduces the exchange preferences the best, but LEGS-FCN still reproduces well and has
significantly better classification accuracy.

LEGS-FIXED LEGS-FCN GCN

0.132 0.146 0.155

test set. We then take the mean and standard deviation across these test set scores to

average out any variability in the particular split chosen. This results in 900 models trained

on every dataset. With mean and standard deviation over 10 ensembled models each with

a separate test set.

4.E Ensembling Evaluation

Recent work by Min et al. [143] combines the features from a fixed scattering transform

with a GCN network, showing that this has empirical advantages in semi-supervised node

classification, and theoretical representation advantages over a standard [106] style GCN.

We ensemble the learned features from a learnable scattering network (LEGS-FCN) with

those of GCN and compare this to ensembling fixed scattering features with GCN as in

Min et al. [143], as well as the solo features. Our setting is slightly different in that we

use the GCN features from pretrained networks, only training a small 2-layer ensembling

network on the combined graph level features. This network consists of a batch norm layer,
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a 128 width fully connected layer, a leakyReLU activation, and a final classification layer

down to the number of classes. In Table 4.8 we see that combining GCN features with fixed

scattering features in LEGS-FIXED or learned scattering features in LEGS-FCN always

helps classification. Learnable scattering features help more than fixed scattering features

overall and particularly in the biochemical domain.

Table 4.8: Mean ± standard deviation test set accuracy on biochemical and social network
datasets.

GCN GCN-LEGS-FIXED GCN-LEGS-FCN

DD 67.82 ± 3.81 74.02 ± 2.79 73.34 ± 3.57
ENZYMES 31.33 ± 6.89 31.83 ± 6.78 35.83 ± 5.57
MUTAG 79.30 ± 9.66 82.46 ± 7.88 83.54 ± 9.39
NCI1 60.80 ± 4.26 70.80 ± 2.27 72.21 ± 2.32
NCI109 61.30 ± 2.99 68.82 ± 1.80 69.52 ± 1.99
PROTEINS 74.03 ± 3.20 73.94 ± 3.88 74.30 ± 3.41
PTC 56.34 ± 10.29 58.11 ± 6.06 56.64 ± 7.34
COLLAB 73.80 ± 1.73 76.60 ± 1.75 75.76 ± 1.83
IMDB-BINARY 47.40 ± 6.24 65.10 ± 3.75 65.90 ± 4.33
IMDB-MULTI 39.33 ± 3.13 39.93 ± 2.69 39.87 ± 2.24
REDDIT-BINARY 81.60 ± 2.32 86.90 ± 1.90 87.00 ± 2.36
REDDIT-MULTI-12K 42.57 ± 0.90 45.41 ± 1.24 45.55 ± 1.00
REDDIT-MULTI-5K 52.79 ± 2.11 53.87 ± 2.75 53.41 ± 3.07
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Table 4.9: Mean ± std. over four runs of mean squared error over 19 targets for the QM9
dataset, lower is better.

LEGS-FCN LEGS-FIXED GCN GraphSAGE GIN Baseline

Target 0 0.749 ± 0.025 0.761 ± 0.026 0.776 ± 0.021 0.876 ± 0.083 0.786 ± 0.032 0.985 ± 0.020
Target 1 0.158 ± 0.014 0.164 ± 0.024 0.448 ± 0.007 0.555 ± 0.295 0.191 ± 0.060 0.593 ± 0.013
Target 2 0.830 ± 0.016 0.856 ± 0.026 0.899 ± 0.051 0.961 ± 0.057 0.903 ± 0.033 0.982 ± 0.027
Target 3 0.511 ± 0.012 0.508 ± 0.005 0.549 ± 0.010 0.688 ± 0.216 0.555 ± 0.006 0.805 ± 0.025
Target 4 0.587 ± 0.007 0.587 ± 0.006 0.609 ± 0.009 0.755 ± 0.177 0.613 ± 0.013 0.792 ± 0.010
Target 5 0.646 ± 0.013 0.674 ± 0.047 0.889 ± 0.014 0.882 ± 0.118 0.699 ± 0.033 0.833 ± 0.026
Target 6 0.018 ± 0.012 0.020 ± 0.011 0.099 ± 0.011 0.321 ± 0.454 0.012 ± 0.006 0.468 ± 0.005
Target 7 0.017 ± 0.005 0.024 ± 0.008 0.368 ± 0.015 0.532 ± 0.405 0.015 ± 0.005 0.379 ± 0.013
Target 8 0.017 ± 0.005 0.024 ± 0.008 0.368 ± 0.015 0.532 ± 0.404 0.015 ± 0.005 0.378 ± 0.013
Target 9 0.017 ± 0.005 0.024 ± 0.008 0.368 ± 0.015 0.532 ± 0.404 0.015 ± 0.005 0.378 ± 0.013
Target 10 0.017 ± 0.005 0.024 ± 0.008 0.368 ± 0.015 0.533 ± 0.404 0.015 ± 0.005 0.380 ± 0.014
Target 11 0.254 ± 0.013 0.279 ± 0.023 0.548 ± 0.023 0.617 ± 0.282 0.294 ± 0.003 0.631 ± 0.013
Target 12 0.034 ± 0.014 0.033 ± 0.010 0.215 ± 0.009 0.356 ± 0.437 0.020 ± 0.002 0.478 ± 0.014
Target 13 0.033 ± 0.014 0.033 ± 0.010 0.214 ± 0.009 0.356 ± 0.438 0.020 ± 0.002 0.478 ± 0.014
Target 14 0.033 ± 0.014 0.033 ± 0.010 0.213 ± 0.009 0.355 ± 0.438 0.020 ± 0.002 0.478 ± 0.014
Target 15 0.036 ± 0.014 0.036 ± 0.011 0.219 ± 0.009 0.359 ± 0.436 0.023 ± 0.002 0.479 ± 0.014
Target 16 0.002 ± 0.002 0.001 ± 0.001 0.017 ± 0.034 0.012 ± 0.022 0.000 ± 0.000 0.033 ± 0.013
Target 17 0.083 ± 0.047 0.079 ± 0.033 0.280 ± 0.354 0.264 ± 0.347 0.169 ± 0.206 0.205 ± 0.220
Target 18 0.062 ± 0.005 0.176 ± 0.231 0.482 ± 0.753 0.470 ± 0.740 0.321 ± 0.507 0.368 ± 0.525
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Optimal Transport in Deep
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Chapter 5

Fixing Bias in

Reconstruction-based Anomaly

Detection

5.1 Introduction

A common problem in real-world data analysis is to identify outliers or anomalies in complex

high-dimensional data without labels or annotations. At a high level we would like points

“similar enough” to the training data to be scored as nominal and points that are not

similar to be scored as anomalous. The real question is then how to describe similarity

to the training set. We consider anomalous points as those that have a low likelihood of

occurring in data generated from the nominal distribution and are likely generated through

some other (anomalous) process. This formulation suggests a density estimation solution.

However, in high-dimensional datasets direct density estimation suffers from the well-known

curse of dimensionality [227], requiring a sample size exponential in the dimension. This

motivates the use of deep networks, which have proven effective in high dimensional spaces

and particularly in cases where there exists structure between dimensions such as in images

or graphs. In such cases, convolutions can take advantage of feature locality.

Autoencoders are common in deep unsupervised anomaly detection with reconstruction
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error serving as a way to identify anomalies, as they give worse reconstruction points that

are far from the training set [34, 155]. However, recent work studying overparameterized

autoencoders suggests that MSE trained autoencoders tend to memorize their training set,

essentially becoming one-nearest-neighbor density estimators [168]. While they may con-

verge to the true density with infinite samples [224], this memorization can be detrimental

for anomaly detection in realistic data. In particular, autoencoders are sensitive to outliers

in the training data and biased towards easily reconstructed points, even if they are anoma-

lous (e.g., in low-density regions of the convex hull of the data). In addition, many types of

autoencoders such as convolutional autoencoders have built-in invariances (for example to

shifts in an image) that make it difficult to detect certain types of anomalies. In particular

we note that autoencoders are:

1. sensitive to outliers in the training data. When a few anomalous points contaminate

the training data, their effectiveness rapidly deteriorates,

2. biased towards simple to reconstruct points, particularly in the span of the data, often

easily reconstructing points in low density regions within the hull,

3. are only able to work well on domains that can be decoded,

4. and may contain built-in invariances (for example to noise or shifts) that make certain

types of anomalies difficult to detect.

Some recent work (e.g., [35, 2, 175]) propose the addition of loss terms that constrain

the autoencoder latent space to better limit the capacity, while other works propose lever-

aging adversarial losses to compute reconstruction error in the generator latent space [182].

However, these methods all still fundamentally rely on a reconstruction penalty (with its

inherent deficiencies) for quantifying abnormality of evaluated points compared to training

data.

Here, we propose a new framework for anomaly detection that falls outside standard

reconstruction-based methods by considering transformations that do lead to anomalies.

Our model, the Lipschitz anomaly discriminator (LAD) takes an input point and outputs

its anomaly score directly. To train LAD we minimize the score of training points and
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maximize the score of “corrupted” points. Here corrupted points are training points that

have been transformed to be more anomalous. We find that the addition of these corrup-

tion functions gives a number of benefits over reconstruction-based methods that cannot

incorporate knowledge of corruption functions.

1. LAD is less sensitive to outliers in the training data, when a few anomalous points

contaminate the training data the performance of reconstruction-based methods de-

teriorates more rapidly than that of LAD.

2. LAD does not require a specification of the bottleneck layer size, a key factor that

has recently received significant attention [174].

3. LAD does not exhibit bias where some data points are intrinsically easier to recon-

struct than others.

4. LAD does not require a decoder to the input space, this is critical in some applica-

tions where it is difficult to reconstruct inputs from the encoding space as in graph

structured data.

Interestingly, LAD is connected to integral probability measures (IPMs), which provide

an alternative probabilistic perspective to that of φ-divergences, which are the basis for

variational and adversarial autoencoders used in anomaly detection. IPMs in some sense

measure the difference between two distributions rather than the quotient [193]. Using the

difference instead of the quotient leads to benefits in terms of robustness to a corrupted train-

ing set and to certain perturbations of the training set, which we explore in Section 5.4.3.

We show the benefits of the LAD framework on health record data where the anomalies

can be quite concentrated, and in graph datasets which are difficult to autoencode.

The remainder of the paper is organized as follows. In Section 5.2, we review the

literature and discuss the strengths and weaknesses of existing methods. In Section 5.3,

we present the preliminary formulations, and in Section 5.4, we develop our framework and

study its theoretical properties. Section 5.5 includes our numerical experiments, and finally,

Section 5.6 is our conclusion.
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5.2 Related Work

Reconstruction-based methods Many works use an information constrained model

trained with reconstruction error assuming that outliers will be poorly reconstructed. The

first deep methods either use traditional outlier detection methods on the learned encod-

ing [7, 62], or directly use the reconstruction error of test points [88, 178]. More recent

works have additional losses but are still fundamentally based on reconstruction penalties.

In [35, 2, 166, 162] the authors add losses to constrain the latent space of an autoencoder to

better limit the capacity. In Section 5.5, we demonstrate how reconstruction-based methods

are sensitive to contamination of the training set, exhibit bias where some points are intrin-

sically easier to reconstruct than others based on the architecture, and how the requirement

of a decoder is detrimental in graph data, which is difficult to decode.

(a) Input Data (b) AE (c) LAD

(d) Input Data (e) AE (f) LAD

Figure 5.1: (a,c) training data (b,e) autoencoder reconstruction score (c,f) LAD anomaly
score (red = more normal, blue = more anomalous). Reconstruction is a poor proxy for
data density and interpolates too well close to the data.
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GAN methods Generative adversarial networks seem like another promising direction

for anomaly detection as they can model complex datatypes. There are a few ways GANs

have been incorporated in existing work, however they are all ultimately similar to the

autoencoder based models in that they rely on a model of the data and reconstruction error

either in the latent space or in the data space. GANs have been used to find the nearest

datapoint to any given point in order to find a type of reconstruction error. In particular

the datapoint in question is traced back to a point in the latent space of the GAN (via

backpropagation), and the nearest point in the data is generated by forward propagation of

the latent point. The reconstruction error is then computed between the GAN-generated

point and the potentially anomalous point [182]. In [222] this process is done by a learned

inverse network. In [5], authors use an autoencoder to reconstruct points, but such that

they are within the training data, as enforced by a GAN loss. Thus this network has both

a GAN loss and an autoencoder loss. In general, these methods do not perform as well as

autoencoders when scoring whole images [175, 53], which is the task we focus on here, and

may suffer from the same type of problems as we note in this paper on autoencoder based

reconstruction scoring. Other work attempts to constrain the autoencoder embedding space

with an adversarial loss such that it only represents only in-class points [162] or conforms

to a prior distribution [166]. This may remove some of the accurately reconstructed low-

density interpolations but may make it even more sensitive to outliers by increasing the

volume of embedded space assigned to each sample in the training set.

Support vector methods Support vector based methods attempt to separate the nor-

mal data from the anomalous space with either planes (OC-SVM) [183] or hyperspheres

(SVDD) [195]. One-class neural networks (OC-NN) [36] and deep support vector data de-

scription (DSVDD) in [173] generalize these to use deep networks. These methods attempt

to create an embedding space where standard OC-NN and SVDD can be applied. These

generalizations do not perform as well as autoencoder based methods [166, 162].

Distance-based density estimation methods A relatively efficient way to estimate

density is using nearest neighbor distances [108, 169, 224, 60]. We compare against the
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method in [27] as one of the best performing methods over a wide variety of datasets [227,

33]. However, these methods require a k-nearest neighbor query, which requires at least

O(n log n) time and at least O(n) space [21]. We instead use a model-based method that

has complexity independent of dataset size. We adapt the distance-based framework to

high dimensions using the dual formulation of the Wasserstein distance.

5.3 Background

Given samples from a nominal probability distribution P over X , the density level set

formulation can be seen as the following. Given some α > 0 we wish to produce a decision

function c : X → {0, 1} on the nominal probability density p(x), such that c(x) = 1[(p(x) >

α] where 1[·] denotes the indicator function and α is predefined either using some absolute

density level or in relation to some quantile of the training data controlling the false positive

error [224].

Recently, there is renewed interest in the use of transportation metrics, such as the

Wasserstein metric, to train neural networks. The Wasserstein GAN [8] and later works

[84] demonstrated the advantages of training GANs with a Wasserstein based loss. The

Wasserstein-1 metric, also known as Earth-mover distance, between two distributions P

and Q defined over Rn with some distance metric d is:

W (P,Q) = inf
π∈Π(P,Q)

E(x,y)∼π
[
d(x, y)

]
(5.1)

This can be thought of as transport plan π that incurs the minimum amount of work to

move one pile of dirt (P ) to another (Q). By the Kantorovich-Rubinstein duality [207] for

the Euclidean distance metric, i.e., d(x, y) = ‖x− y‖,

W (P,Q) = sup
‖f‖L≤1

Ex∼P f(x)− Ex∼Qf(x) (5.2)

Here f is often called the witness function, as it “witnesses” the difference between P and

Q maximally. By constraining the network to be 1-Lipschitz we can, by gradient descent,

approximate the Wasserstein distance between the two distributions for which we have
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samples.

This second formulation can be more generally described in terms of integral probability

measures (IPMs), which are a family measures that quantify the distance between distri-

butions in terms of integrations over some witness constrained function f . Depending on

the form of f , IPMs encompass the well-known Wasserstein distance, the total variation

distance, Kolmogorov distance, maximum mean discrepancy (MMD) depending on the re-

strictions placed on the family of functions optimized over F . In the case of the Wasserstein

distance F = ‖f‖L ≤ 1, i.e. functions with Lipschitz constant at most 1. We focus on the

Wasserstein distance and the family of Lipschitz functions as these are easy to approximate

using neural networks, but we note that all of our theoretical results can be adapted more

generally to IPMs. In anomaly detection, basing our method on IPMs is useful as IPMs

are more robust to some sorts of noise and can have better rates of convergence than other

divergences measured on a pointwise basis, which are most commonly φ-divergences [193].

Figure 5.2: LAD trains a Lipschitz neural network f to discriminate between the data and
a corrupted version of the data. Our trained network f∗ is then used to score anomalies.
Darker = more anomalous.
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5.4 The Lipschitz Anomaly Discriminator

We propose to learn an anomaly scoring function as the output of a neural network we

call Lipschitz anomaly discriminator (LAD). Our neural network function f is trained to

maximally discriminate between nominal training data Pn, and a corrupted version of it

P̂a. Since we are tackling the unsupervised anomaly detection problem, we use a corrupted

version of the training data as a substitute for the true (unknown) distribution of anoma-

lous points Pa (See Fig. 5.2). This corrupted version of the training data allows us to

directly encode knowledge about what kinds of transformations might lead to anomalous

points, which is not possible when using a reconstruction quality approach. To incorporate

knowledge of what kinds of transformations and invariances do not lead to anomalies, we

can take advantage of the neural network structure of f and, as in other deep anomaly

detection models, augment the training data.

While general forms of f can be considered, we focus on f with global Lipschitz con-

straints. We focus on Lipschitz constrained networks for the following three reasons: (1)

This constraint gives assurance that similar datapoints will be scored similarly, which is

not true of a network with arbitrary gradients. (2) There exist previous work in the gen-

erative adversarial network literature that explore how to efficiently optimize a Lipschitz

constrained network [8, 84], which we can borrow from. For other desirable constrained

families of functions, for instance Hölder continuous functions, there do not exist efficient

stochastic gradient descent algorithms for solving. (3) Optimizing over the family of Lips-

chitz functions is equivalent to solving for the Wasserstein distance, which is well studied

and has useful theoretical and geometric interpretations.

To optimize our discriminator, we use the gradient penalty formulation in WGAN-

GP [84], given by:

L = Ex∼Pn
[
f(x)

]
− E

x∼P̂a

[
f(x)

]
(5.3)

+ λEx∼Px
[
(‖∇xf(x)‖2 − 1)2

]
,

where Px is obtained by sampling uniformly along straight lines between pairs of points
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sampled from P̂a and Pn. We use λ = 10 as suggested in the original work. This enforces

a gradient of unit norm at least in the interior of the data.

We note that while the GAN-based anomaly detection [182, 222, 5] methods also use

discriminators (and generators), these methods are more similar to the autoencoder methods

in that they use reconstruction error, effectively the difference between an image and its

closest neighbor that can be generated by the GAN to determine anomalies. They do not

use the discriminator to directly score anomalies.

5.4.1 Choosing the Corrupted Distribution

The choice of the corrupted distribution to train against is useful in building inductive

bias into the model. In LAD, choice of the corruption process allows us to bias the model

towards what kinds of anomalies to expect.

The difference in the average score on the true anomalies and the average score on the

true nominal points is bounded above by the Wasserstein distance between the true anomaly

distribution and the estimate of the anomaly distribution (see Eq. 5.8). This guarantees

that the better the estimate of the anomaly distribution, the better the performance of

LAD. Practically, we find the corruption process should be datatype dependent, but the

exact amount of noise is not critical. In our experiments, we first corrupt the data with

gaussian noise on all datatypes. When we have information on the structure of the data,

we add additional structured corruption. For example, on images we shuffle image patches

and on graphs we remove and add edges with some probability.

5.4.2 Combination with Other Models

Since LAD is quite different from the methods based on autoencoders, it is natural to con-

sider what happens when we combine separately trained LAD and autoencoder models.

We call this model LAD+CAE, our Lipschitz anomaly discriminator combined with a con-

volutional autoencoder. This model provides a state of performance on MNIST and near

state of the art on CIFAR10 with a relatively small model (the same sized used on MNIST)

without extensive tuning.

Since these two models have outputs on different scales, to combine them we divide each
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score by the training set standard deviation for that model before summing the two scores.

This is a very simple ensemble method that could be improved with more investigation.

However, the performance gain by combining these two models suggests that they have

very different biases in which type of samples they score as anomalous. Where each model

has an advantage is an interesting question which we investigate in Section 5.5.1.

5.4.3 Theoretical Properties of Anomaly Discrimination

Training set contamination

The standard anomaly detection task assumes access to training data sampled i.i.d. from

some nominal distribution, which is unrealistic in a big data setting. Formally, we consider

the problem where samples are drawn from a mixture of the nominal probability distribution

Pn and the anomalous distribution Pa. That is, we are given n samples {xi}ni=1 drawn i.i.d.

from the probability distribution (1 − γ)Pn + γPa, where γ ∈ (0, 1) and γ � 1 represents

the anomaly contamination. We show that while existing deep anomaly detection methods

perform well on clean training data (i.e., γ = 0), they are very sensitive to even a small

amount of contamination in the training set.

Suppose our training set is corrupted with a fraction γ > 0 of anomalous datapoints,

then our method should still effectively distinguish between nominal and anomalous data.

Because we are training the discriminator f to maximize the difference between the nominal

and corrupted points subject to a Lipschitz constraint, then the Kantorovich-Rubinstein

duality holds. Implying that if our corruption process follows the distribution of anomalies

(i.e., P̂a = Pa) then the change in the difference between the nominal and anomalous points

is bounded from below. This is summarized in the following proposition.

Proposition 1. Let f (A,B) denote the optimal solution to max‖f‖L≤1 Ex∼Af(x)−Ex∼Bf(x),

and in particular let f∗ = f (Pn,Pa) and f∗∗ = f ((1−γ)Pn+γPa,Pa). If Pn has a compact support

Sn and Pa has compact support Sa then

∣∣Ex∼Pn [f∗(x)− f∗∗(x)] + Ex∼Pa [f∗∗(x)− f∗(x)]
∣∣

≤ 1

1− γ
W (Pn, (1− γ)Pn + γPa).
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Proof. Let A =
∣∣Ex∼Pn [f∗(x)− f∗∗(x)]− Ex∼Pa [f∗(x)− f∗∗(x)]

∣∣. Then, we can write

A =
∣∣Ex∼Pn [f∗(x)− f∗∗(x)]− Ex∼Pa [f∗(x)− f∗∗(x)]

∣∣
=
∣∣(1− γ)Ex∼Pn [f∗(x)− f∗∗(x)]

+ γEx∼Pn [f∗(x)− f∗∗(x)]

− Ex∼Pa [f∗(x)− f∗∗(x)]
∣∣

=
∣∣Ex∼(1−γ)Pn+γPa [f∗(x)− f∗∗(x)]

− Ex∼Pa [f∗(x)− f∗∗(x)] + γA
∣∣,

which forms a geometric series. Therefore, for γ < 1 we get

A =
1

1− γ
∣∣Ex∼(1−γ)Pn+γPa [f∗(x)− f∗∗(x)]

− Ex∼Pa [f∗(x)− f∗∗(x)]
∣∣.

We now examine the f∗ and f∗∗ portions of A separately. By reorganizing terms, we can

write A = 1
1−γ
∣∣Af∗ +Af∗∗

∣∣ with

Af∗ = Ex∼(1−γ)Pn+γPa [f∗(x)]− Ex∼Pa [f∗(x)]

= (1− γ)Ex∼Pn [f∗(x)] + γEx∼Pa [f∗(x)]

− Ex∼Pa [f∗(x)]

= (1− γ) (Ex∼Pn [f∗(x)]− Ex∼Pa [f∗(x)])

= (1− γ)W (Pn, Pa);

Af∗∗ = Ex∼Pa [f∗∗(x)]− Ex∼(1−γ)Pn+γPa [f∗∗(x)]

= −W ((1− γ)Pn + γPa, Pa).
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Combining terms and applying the triangle inequality,

A =
1

1− γ
∣∣Af∗ +Af∗∗

∣∣
=

1

1− γ
∣∣(1− γ)W (Pn, Pa)−W ((1− γ)Pn + γPa, Pa)

∣∣
≤ 1

1− γ
W (Pn, (1− γ)Pn + γPa),

which proves the proposition.

This result can be thought of bounding the difference of score on between normal points

and anomalous points when the training set is corrupted by the addition of anomalies 0 ≤

γ ≤ 1. When the training set is corrupted by a small amount, the anomaly scoring function

does not change too much in expectation. Compared to a score based on reconstruction

error, a single point can affect the scoring function an arbitrary large amount. For example,

take an anomaly distribution that is a Dirac at one point which is easily reconstructable,

e.g. the black image in MNIST. Then, corrupting the training data with a single anomalous

example can take the MSE to zero for the entire anomaly distribution. This is an adversarial

case; however, we find that this also occurs in practice (See Sec. 5.5.1).

Robustness to distant points

As is apparent in Fig. 5.1, for reconstruction-based anomaly detection methods, we are not

guaranteed to correctly predict anomalous points even for points that are very far from the

support of the nominal data distribution. On the other hand, LAD does not suffer from

this instability. We formalize this in our next proposition. Intuitively, points sufficiently far

away from the data will have a higher anomaly score than any point in the data.

Proposition 2. Let f∗ be the optimal solution of

sup‖f‖L≤1 (Ex∼Pn [f(x)]− Ey∼Pa [f(y)]), and let π be the optimal coupling between Pn and

Pa defined as the minimizer of W (Pn, Pa) = infπ∈Π(Pn,Pa) E(x,y)∼π[‖x−y‖], where Π(Pn, Pa)

is the set of joint distributions whose marginals are Pn and Pa, respectively. Then, under

the same conditions as Prop. 1, there exists C > 0 such that f∗(y) ≤ C − infx∈Sn{‖x− y‖}

for Pa-almost every y.
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Proof. First, we recall from Theorem 5.10 (iii) of [207] that since Pn and Pa have compact

support f∗ exists, and from Theorem 5.10 (ii) of [207] that π-almost surely, f∗(x)−f∗(y) =

‖x− y‖, and therefore also π-a.s., f∗(y) = f∗(x)− ‖x− y‖. Now, let

A = {y : ∃x ∈ Sn s.t. f∗(y) = f∗(x)− ‖x− y‖}, (5.4)

and let Ac be its complement. Then, clearly by definition, for any (x, y) ∈ Sn × Ac we

must have f∗(y) 6= f∗(x) − ‖x − y‖, and thus π(Sn × Ac) = 0. Therefore, by the equality

of marginals (and since Sn is the support of Pn, we have Pa(A
c) = π(Sn × Ac) = 0, which

yields Pa(A) = 1. Thus, for Pa-almost every y we can write f∗(y) = f(x′)−‖x′−y‖ for some

x′ ∈ Sn. Finally, since Sn is compact and f∗ is continuous, we can set C = maxx∈Sn f
∗(x)

and clearly have both f∗(x′) ≤ C and ‖x′ − y‖ ≥ infx∈Sn{‖x− y‖}, which yields the result

in the proposition.

Corollary 5.4.1. Under the conditions of Prop. 2, there exists R > 0 such that for Pa-

almost every y, if infx∈Sn ‖y − x‖ > R then f∗(y) < f∗(x) for Pn-almost every x.

Proof. Let R be the diameter of Sn defined as supx,y∈Sn{‖x − y‖}, which must be finite

since Sn is compact, and let x0 ∈ Sn be a point where f∗ reaches its maximum value, which

was chosen as C in the proof of Prop. 2. Then, since f∗ is a Lipschitz-continuous function,

then for every x ∈ Sn we have 0 ≤ C − f(x) ≤ ‖x − x0‖ ≤ R, thus, f(x) ≥ C − R, and

together with Prop. 2 we get the result of the corollary.

For a single training example, this can be understood as a peak at the training example,

with f∗ decaying with slope 1 in every direction from this point. If we zoom out enough,

every set of bounded support is similar to this single training example.

Relation to classification

Previous work has shown that integral probability measures are related to the negative

risk of an optimal classifier selected from the same class of functions. In the case of the

Wasserstein distance, this is all 1-Lipschitz thus as shown in [193] our optimization can be

interpreted as finding the optimal classifier between the training data and the corrupted

72



data in terms of risk, where risk is defined as

RLF = inf
f∈F

∫
X
L(y, f(x))dµ(x, y) (5.5)

where L(y, f(x)) = −yf(x) with y ∈ {±1}.

Robustness to smooth perturbations

The Wasserstein distance, and consequently our model, behaves well under bounded smooth

perturbations. Let h : X → X be a continuous function such that ‖h(x) − x‖ ≤ ε and let

ν be the image of h applied pointwise to distribution µ defined over Rd, ν =
∫
µ(h(x))dx

then as shown in [119], and easily verified using the Kantorovich dual, the Wasserstein

distance between µ and ν, W (µ, ν) ≤ ε. This fact applies to our work in the following way,

supposed we have access to a smooth perturbation Qn = Pn(h(x))dx of the true training

data distribution Pn, where the perturbation h is bounded pointwise by ε, then by the

triangle inequality over the Wasserstein distance,

|W (Qn, P̂a)−W (Pn, P̂a)| ≤ ε (5.6)∣∣(EQnfQ − E
P̂a
fQ
)
−
(
EPnfP − E

P̂a
fP
)∣∣ ≤ ε. (5.7)

The average difference in score between the nominal and anomalous distributions of our

discriminator fQ in the perturbed case is very similar to the optimal discriminator fP in the

unperturbed case. We note that this sort of bound is only possible under integral probability

metrics. For example, we examine a simple example under a standard φ divergence, such

as the KL divergence, which is used in variational and adversarial autoencoders. Let the

nominal distribution be supported on an interval of length less than ε on R, then under a

shift of size ε, h(x) = x + ε, then KL(P,Q) → ∞ since the supports of P and Q do not

intersect, whereas W (P,Q) ≤ ε.

As a final note, a similar bound can be found between the optimal discriminator func-

tion and the one learned by our estimate P̂a of the unknown true Pa. Indeed, since both

W (Pn, Pa) ≤ W (Pa, P̂a) + W (P̂a, Pn) and W (Pn, P̂a) ≤ W (Pn, Pa) + W (Pa, P̂a) by the
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triangle inequality, then

∣∣W (Pn, Pa)−W (Pn, P̂a)
∣∣ ≤W (Pa, P̂a) . (5.8)

Our model, and in particular the difference in the average scores, is bounded close to the

optimal discriminator depending on the choice of anomaly and corruption distributions.

5.5 Experimental Evaluation

We evaluate LAD in three domains, images in Section 5.5.1, health record (i.e. tabular data)

in Section 5.5.2, and graphs in Section 5.5.3. In images, reconstruction-based methods are

almost ubiquitous, and are the benchmark on unsupervised anomaly detection tasks for

semantic anomaly detection [174] (See Figure 5.3 for the setup). Using the architecture of

a convolutional autoencoder is key to this performance. We show that LAD performs quite

well on these tasks and particularly well when either training set corruption is introduced

or on specific biased points. On tabular data benefits from convolutions do not apply and

the benefits of deep anomaly detection over more traditional distance-based methods is

less clear, but LAD is still able to perform well as it is related as an integral probability

measure to distance based methods. On graph structured data autoencoders fail because

it is extremely difficult to “decode” from a node order equivariant vector representation of

a graph back to the adjacency matrix.

In Figure 5.1, we compare LAD to an autoencoder on some illustrative 2D datasets. Au-

toencoder reconstruction error has no guarantees, especially on points far from the training

data, which is apparent in the “streakiness” in (b,e). The autoencoder learns to reconstruct

the data, but also many points outside of the data. Poor reconstruction outside of the

data is only indirectly optimized and not guaranteed. LAD on the other hand optimizes

a function that is explicitly minimized in low density regions around the data, so we are

guaranteed that points far away from the data are scored as anomalies.
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Figure 5.3: Unsupervised semantic anomaly detection setup for CIFAR10. (a) standard
setup and (b) with training set corruption where a small percentage of images from anoma-
lous classes are treated as part of the nominal training data.

5.5.1 Unsupervised Anomaly Detection on Images

We compare LAD against a selection of reconstruction-based methods (CAE, DCAE, RCAE,

AND) [35, 88, 209], reconstruction-based methods with adversarial additions (ALOCC,

AnoGAN) [182, 175], support vector methods (OCSVM, DSVDD) [183, 173], and more

traditional methods (IF, LOF) [131, 27]. AND and AnoGAN models were not run for this

paper so results are not available for training set contaminated instances (See Table 5.1).

Our experiments are intended to compare LAD with existing reconstruction-based methods

as well as traditional anomaly detection methods.

We show how reconstruction-based methods are sensitive to training set contamination

(Sec. 5.5.1) and perform poorly on interpolated points (Sec. 5.5.1). Finally, we show how

combined with a standard convolutional autoencoder, LAD can achieve excellent perfor-

mance on MNIST and CIFAR10.

To evaluate our method, we apply our model to three datasets, MNIST, CIFAR10,

and the veterans aging cohort study (VACS), an electronic health record dataset with lab

values for 1.3 million visits of HIV-positive veterans. For an evaluation metric, we use the

area under the curve (AUC) of the receiver operator characteristics (ROC) curve. The
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AUC is both scale-invariant and threshold invariant; it measures how well predictions are

ranked rather than the specific output values, and it measure the model quality over all

classification thresholds, which are both desirable properties for anomaly detection models.

The AUC for a model f can be thought of as the probability that a positive example (x1)

is scored higher than a negative example (x0):

AUC = P [(f(x1) > f(x0)]; (5.9)

All error bars are 95% confidence intervals and are computed over the test set. The

test sets for the MNIST and CIFAR datasets are as originially prescribed, and the test

sets for the VACS and graph datasets are determined using a random 10% split. All

quantitative experiments were run over 3 initializations. All networks have depth 3 with

LeakyReLU activations and widths are chosen to match the number of parameters within

1%. Convolutional layers were used for MNIST and CIFAR10 and dense layers were used

for VACS.

Training set contamination

To demonstrate empirically the problem with contamination, we show what happens on a

standard MNIST anomaly detection task as we add some corruption to the training set.

Previous work considers the mean AUC over classes trained on each one of the 10 digits with

pure training sets. We consider the same with one additional variable, training set contami-

nation π ∈ [0, 0.10], where up to 10% of the training set are other digits. To contaminate the

training data for a given digit, we add random samples from the training data of the other 9

digits to the training data until we reach the correct fraction of training set contamination.

To create the corrupted training distribution P̂a, we take 4 × 4 patches of the image and

shuffle these in random order. To evaluate each model, we use AUC over the entire test set

containing 10,000 images, 1,000 of which are the nominal class. Examining the results in

Table 5.1, most methods perform quite well on a training set that only contains nominal

data, but performance decays rapidly with increased training set corruption. LAD performs

competitively on the standard task, but importantly, as the contamination increases above
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Train Corrupt. 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

LAD (ours) 0.940 0.937 0.933 0.933 0.926 0.923 0.921 0.917 0.911 0.905 0.901
LAD + CAE (ours) 0.981 0.965 0.954 0.947 0.941 0.936 0.930 0.925 0.921 0.916 0.912
ALOCC [175] 0.694 0.511 0.514 0.498 0.521 0.539 0.505 0.495 0.504 0.504 0.509
CAE [88] 0.965 0.925 0.898 0.887 0.876 0.868 0.859 0.851 0.844 0.837 0.832
DCAE [209] 0.967 0.925 0.899 0.886 0.874 0.865 0.857 0.850 0.842 0.834 0.829
DSVDD [173] 0.748 0.788 0.748 0.750 0.729 0.718 0.746 0.725 0.703 0.710 0.696
IF [131] 0.853 0.853 0.849 0.845 0.844 0.837 0.836 0.832 0.829 0.827 0.822
LOF [27] 0.973 0.958 0.918 0.873 0.830 0.789 0.762 0.745 0.730 0.718 0.709
OCSVM [183] 0.954 0.895 0.867 0.853 0.840 0.828 0.819 0.812 0.806 0.800 0.794
RCAE [35] 0.957 0.934 0.906 0.894 0.881 0.870 0.861 0.854 0.845 0.838 0.832

Table 5.1: Shows the mean AUC over digits over 3 seeds for training set corruption levels
from 0% to 10% on MNIST.

1%, LAD continues to perform well, showing its robustness to training set contamination.

This is expected in light of Prop. 1. When combined with a convolutional autoencoder as

described in Sec. 5.4, LAD+CAE outperforms existing methods on this task.

plane car bird cat deer dog frog horse ship truck mean

LAD (ours) 0.597 0.663 0.411 0.531 0.362 0.561 0.409 0.592 0.777 0.744 0.565
LAD + CAE (ours) 0.723 0.497 0.652 0.538 0.725 0.544 0.714 0.565 0.763 0.529 0.635
ALOCC [175] 0.421 0.439 0.530 0.505 0.500 0.473 0.500 0.377 0.387 0.500 0.463
AND [2] 0.717 0.494 0.662 0.527 0.736 0.504 0.726 0.560 0.680 0.566 0.617
AnoGAN [182] 0.671 0.547 0.529 0.545 0.651 0.603 0.585 0.625 0.758 0.665 0.618
CAE [88] 0.683 0.454 0.677 0.524 0.765 0.525 0.731 0.541 0.706 0.435 0.604
DCAE [209] 0.689 0.447 0.679 0.534 0.765 0.526 0.729 0.539 0.717 0.426 0.605
DSVDD [173] 0.518 0.656 0.528 0.530 0.565 0.568 0.587 0.565 0.540 0.650 0.571
IF [131] 0.670 0.442 0.645 0.512 0.743 0.516 0.711 0.529 0.694 0.529 0.599
LOF [27] 0.661 0.440 0.649 0.506 0.688 0.511 0.692 0.518 0.685 0.405 0.575
OCSVM [42] 0.684 0.456 0.674 0.509 0.749 0.502 0.699 0.501 0.670 0.453 0.590
RCAE [35] 0.675 0.429 0.669 0.541 0.745 0.531 0.690 0.527 0.710 0.404 0.592

Table 5.2: AUC on representative CIFAR10 classes over 3 seeds with mean over all classes.

Bias towards interpolated points in the data convex hull

MNIST Digits vs. All-Black Image Further experiments to study the interpolation

bias are shown on MNIST with an all-black image, which is close to the mean MNIST

image. Anomaly scores of the black image are compared to anomaly scores of nominal test

images by computing the rank of its score within the nominal test data. We train the model

on all ‘0’s in the training set, and for testing we compute the black-image score relative to

that of the 1,000 test ‘0’s, with higher rank being more anomalous. We would expect this

image to be more anomalous than any of the images in the test set (i.e., have a rank of 1).

Table 5.3 shows that models based on reconstruction error consider the all black image as
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Digit 0 1 2 3 4 5 6 7 8 9 mean

ALOCC [175] 0.351 0.015 0.199 0.194 0.204 0.216 0.164 0.121 0.160 0.060 0.168
LAD (ours) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CAE [88] 0.017 0.395 0.010 0.001 0.014 0.001 0.053 0.083 0.091 0.002 0.067
DCAE [209] 0.001 0.149 0.001 0.001 0.008 0.001 0.001 0.001 0.299 0.126 0.059
DSVDD [173] 0.757 0.480 0.136 0.368 0.917 0.273 0.847 0.571 0.627 0.736 0.571
LOF [27] 0.876 0.986 0.140 0.625 0.765 0.330 0.961 0.865 0.509 0.895 0.695
OCSVM [183] 0.916 0.977 0.355 0.498 0.668 0.259 0.803 0.863 0.553 0.873 0.677
RCAE [35] 0.023 0.418 0.001 0.001 0.001 0.001 0.005 0.001 0.007 0.033 0.049

Table 5.3: Shows the mean anomaly rank of the black image in the nominal test data.
Scores are in [0, 1], higher is better. Scores are measured on the MNIST test set of each
digit trained on the uncorrupted training set for each digit over 3 seeds. Since the black
image is inherently easy to reconstruct, it receives a low anomaly score in reconstruction
based models.

less anomalous than many of the test digits. LAD consistently ranks the black image as

most anomalous.

CIFAR10 performance on high variability classes We perform the same training

set corruption experiment on CIFAR10 to show performance on a more complicated dataset

(see Table 5.2). We find there is a large variability in performance of each model between

classes. In four of the classes, LAD outperforms all other models. Most methods perform

poorly on the automobile and truck classes, which is consistent with [2, 173]. Additionally,

reconstruction-based methods give low anomaly scores to test points that are close to the

mean training image, as it is relatively easy to reconstruct. This is a poor inductive bias in

cases where the nominal distribution has low density near the mean. In images of animals

most of them are fairly close to the mean. However, in objects with the potential for bright

colors (e.g., red cars on white backgrounds or black planes on white sky) these nominal

images are very far from the mean training image for the class. This is shown in Fig. 5.4

where most nominal points predicted by a DCAE are relatively near to the mean image.

In contrast, LAD gives more varied top nominal images often mistaking trucks for cars but

not animals for cars.

5.5.2 Tabular Health Record Anomaly Detection

To establish usability in medical settings and on tabular data, we test our model on health

records (see Fig. 5.5) that represent a large source of data that is error prone and difficult
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(a) (b) (c)

Figure 5.4: Top 100 nominal images in test set of LAD (a) and DCAE (b) trained on the
automobile class. (c) Mean over examples of pixel values for each class. Many car images
have white background and/or bright colors that are far from the mean image. LAD does
better at modeling such images.

to cleanse of anomalies for training purposes. We use fully connected layers since there is

no clear convolutional structure to the data. We also match the number of parameters in

each model to within 1%. Here, we use the veterans aging cohort study (VACS) dataset1

containing 1.3 million clinic visits by over 28,000 HIV-positive veterans. Ten HIV relevant

lab values were chosen and standardized (zero mean, unit std)̇. To establish a set of known

nominal vs. anomalous points we use clinic visits with a Creatinine lab value > 2 standard

deviations away from the mean (in this case > 4.30 mg/dL) as anomalous. This threshold

is well above the normal patient reference range [95], indicating high risk for renal disease.

We split our data into 80% training and validation set, and 20% test set. To vary the

training set contamination, we add a percentage of the high Creatinine values to the nominal

training set. Since these patients are all in a similar state, even adding 0.3% outliers to

the training set drastically decreases performance. Fig. 5.5 shows the AUC performance

of various deep models on this task. Adding even a small amount of high Creatinine lab

values encourages an autoencoder to represent them, and thereby all other anomalous ones,

reducing performance for reconstruction error based models. All models including more

traditional anomaly detection methods have difficulty with these concentrated anomalies

1. https://medicine.yale.edu/intmed/vacs/
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(a) (b)

Figure 5.5: (a) Shows input data embedding with PHATE [148] colored by Creatinine in
mg/dL. (b) Shows the AUC of various anomaly detection models over levels of training set
corruption on the VACS data.

under training set corruption. Our model robustly detects high Creatinine anomalies, with

up to 3% training set contamination. This shows that LAD performs well in medical

applications where data cleaning is difficult, and outliers are often concentrated around

specific values.

5.5.3 Graph Anomaly Detection

There is a growing interesting in graph structured data. This type of data occurs naturally

in social networks, molecular networks, protein interaction networks, and gene interaction

networks. Graphs can be used to describe the relations between concepts or the physical

structure between objects in a natural way. Most work has focused on learning supervised

or semi-supervised node representations for a single large graph [106] (such as nodes in a

citation network). Here we focus on learning graph level representations for datasets that

contain many graphs, for instance graphs of protein molecules. Specifically, we focus on

the problem of predicting anomalous or novel graph structures that are different from set

of known graphs. For instance, in the critical assessment of functional annotation (CAFA)

challenge [226], the goal is to predict the function of newly designed proteins, whose struc-

ture can be represented as graphs [79]. While graph convolutional networks [30, 78, 64]

have been primarily applied to classify over known functional annotations, an interesting

direction is to predict whether a protein will have a novel function, not described in the

current annotation set. This can be particularly useful in drug discovery, where it is rela-

tively easy to generate new protein structures with tools like ROSETTA [116], but we do
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not necessarily know the function of these newly generated structures. Since novel function

is related to novel structure, it would be useful to find novel graph structures from some

large potential set.

We compare LAD with the reconstruction error from graph autoencoder (GAE) and

variational graph autoencoder (GVAE) [107] on this task. GAE and GVAE are models that

learn how to reproduce the adjacency matrix from a node equivariant vector representation

learned from the adjacency matrix and feature matrix. We split the training data in the

same way as on the image classification datasets in Section 5.5.1 as shown in Figure 5.3.

The ENZYMES graph dataset [26] contains 600 graphs split equally over six classes of

enzymes. We split the dataset randomly into 80% train 10% validation and 10% test set

randomly. To corrupt a graph, we added Gaussian noise of σ = 1/5 to each feature and

dropped and added randomly 1/20 of the edges in each graph. While this is a difficult task,

as the state of the art classifiers on this dataset get roughly 65% accuracy [64], we find that

LAD is better able to classify these anomalous vs. nominal graphs on the test set as seen

in Table 5.4.

(µ± σ) Test AUC Test AP

LAD 0.572 ± 0.127 0.288 ± 0.093
GAE 0.528 ± 0.112 0.233 ± 0.095
VGAE 0.527 ± 0.109 0.233 ± 0.095

Table 5.4: Mean ± std. over three runs on the six classes of the ENZYMES graph dataset of
the area under the receiver operator characteristic (AUC) and the average precision (AP).

5.5.4 Network Architecture and Training Details

In all experiments we use the Adam optimizer [103]. For our Lipschitz models we set β1 = 0.

For all others we use default optimizer parameters, lr = 0.001, β1 = 0.9, β2 = 0.999 and

ε = 1 × 10−8. As previously noted, network widths are chosen to match the number of

parameters between autoencoder and encoder-only architectures. For all models we train

with batchsize = 128, and 20,000 batches.

For our Lipschitz anomaly discriminator we use a simple convolutional discriminator ar-

chitecture designed to approximately match the number of parameters used in the autoen-
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Layer Output Shape Param #

InputLayer (28, 28, 1) 0
Conv2D (14, 14, 16) 272
LeakyReLU (14, 14, 16) 0
Conv2D (7, 7, 32) 8224
LeakyReLU (7, 7, 32) 0
Conv2D (4, 4, 64) 32832
LeakyReLU (4, 4, 64) 0
Flatten (1024) 0
Dense (64) 65600
LeakyReLU (64) 0
Dense (64) 4160
LeakyReLU (64) 0
Dense (1) 65

Total params: 111,153

(a)

Layer Output Shape Param #

InputLayer (28, 28, 1) 0
Conv2D (14, 14, 16) 272
LeakyReLU (14, 14, 16) 0
Conv2D (7, 7, 32) 8224
LeakyReLU (7, 7, 32) 0
Conv2D (4, 4, 64) 32832
LeakyReLU (4, 4, 64) 0
Flatten (1024) 0
Dense (10) 10250

Dense (256) 2816
LeakyReLU (256) 0
Reshape (4, 4, 16) 0
Conv2DT (8, 8, 64) 16448
LeakyReLU (8, 8, 64) 0
Conv2DT (16, 16, 32) 32800
LeakyReLU (16, 16, 32) 0
Conv2DT (32, 32, 16) 8208
LeakyReLU (32, 32, 16) 0
Conv2D (32, 32, 1) 257
Cropping2D (28, 28, 1) 0

Total params: 112,107

(b)

Table 5.5: (a) Convolutional Lipschitz network architecture. (b) Convolutional autoencoder
architecture.

coder model (Table 5.5a). For our image dataset comparisons, we use a simple convolutional

autoencoder (Table 5.5b) with Leaky-ReLU activations. For the Deep-SVDD comparison,

we use a similar model as in Table 5.5a, but without bias parameters (as required in [173]).

For our ALOCC implementation we use the same architectures as below for the denoising

autoencoder and discriminators. For the tabular data in the VACS dataset we use dense

layers as shown in Tables 5.6(a,b) again to match the number of parameters.

Code reproducing these results is implemented in Keras and is available at https:

//github.com/KrishnaswamyLab/LAD.
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Layer Output Shape Param #

Dense 256 2816
LeakyReLU 256 0
Dense 128 32896
LeakyReLU 128 0
Dense 64 8256
LeakyReLU 64 0
Dense 1 65

Total params: 44,033

(a)

Layer Output Shape Param #

Flatten 10 0
Dense 128 1408
LeakyReLU 128 0
Dense 96 12384
LeakyReLU 96 0
Dense 64 6208
LeakyReLU 64 0
Dense 10 650

Dense 64 4160
LeakyReLU 64 0
Dense 96 6240
LeakyReLU 96 0
Dense 128 12416
LeakyReLU 128 0
Dense 10 1290

Total params: 44,666

(b)

Table 5.6: (a) Dense Lipschitz network architecture. (b) Dense autoencoder architecture.

5.6 Conclusion

In this work, we introduce a Wasserstein-distance based deep anomaly detection framework.

We show the advantage of our discriminator-based framework, which learns to reason about

the probability density of the nominal data and produces an anomaly score based on dis-

tribution distances, as opposed to other deep methods that rely on reconstruction-error

criteria. We show reconstruction methods may learn to reconstruct “averaged images” that

are within the convex hull of the data. In contrast, LAD provides guarantees on points

with low support in the training data. Furthermore, we showed that LAD significantly

outperforms existing methods on slightly corrupted training data, which is more realistic

than assuming anomaly-free training data in large datasets. We show the benefits of this

discriminator in image, tabular health record, and graph domains. In particular on graphs,

our encoder only architecture is extremely beneficial as graphs are difficult to decode from

vector spaces.
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Chapter 6

TrajectoryNet

6.1 Introduction

In data science we are often confronted with cross-sectional samples of time-varying phe-

nomena, especially in biomedical data. Examples include health measurements of different

age cohorts [152], or disease measurements at different stages of disease progression [210].

In these measurements we consider data that is sampled at multiple timepoints, but at each

timepoint we have access only to a distribution (cross-section) of the population at that

time. Extracting the longitudinal dynamics of development or disease from static snapshot

measurements can be challenging as there are few methods of interpolation between dis-

tributions. Further exacerbating this problem is the fact that the same entities are often

not measured at each time, resulting in a lack of point-to-point correspondences. Here, we

propose to formulate this problem as one of unbalanced dynamic transport, where the goal

is to transport entities from one cross sectional measurement to the next using efficient and

smooth paths. Our main contribution is to establish a link between continuous normalizing

flows (CNF) [81] and dynamic optimal transport [17], allowing us to efficiently solve the

transport problem using a Neural ODE framework [38]. To our knowledge, TrajectoryNet1

is the first method to consider the specific paths taken by a CNF between distributions.

The continuous normalizing flow formulation allows us to generalize optimal transport

1. Code is available here: https://github.com/KrishnaswamyLab/TrajectoryNet
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to a series of distributions as in recent work [41, 19]. These works focus on the theoretical

aspects of the problem, here focus on the computational aspects. This link allows us to

smooth flows over multiple and possibly unevenly spaced distributions in high dimensions.

This matches the setting of time series data from single-cell RNA sequencing.

Single-cell RNA sequencing [138] is a relatively new technology that has made it possi-

ble for scientists to randomly sample the entire transcriptome, i.e., 20-30 thousand species

of mRNA molecules representing transcribed genes of the cell. This technology can reveal

detailed information about the identity of individual cells based on transcription factors,

surface marker expression, cell cycle and many other facets of cellular behavior. In particu-

lar, this technology can be used to learn how cells differentiate from one state to another: for

example, from embryonic stem cells to specified lineages such as neuronal or cardiac. How-

ever, hampering this understanding is the fact that scRNA-seq only offers static snapshots

of data, since all cells are destroyed upon measurement. Thus it is impossible to monitor

how an individual cell changes over time. Moreover, due to the expensive nature of this

technology, generally only a handful of discrete timepoints are collected in measuring any

transition process. TrajectoryNet is especially well suited to this data modality. Existing

methods attempt to infer a trajectory within one timepoint [85, 177, 113], or interpolate

linearly between two timepoints [219, 181], but TrajectoryNet can interpolate non-linearly

using information from more than two timepoints. TrajectoryNet has advantages over ex-

isting methods in that it:

1. can interpolate by following the manifold of observed entities between measured time-

points, thereby solving the static-snapshot problem,

2. can create continuous-time trajectories of individual entities, giving researchers the

ability to follow an entity in time,

3. forms a deep representational model of system dynamics, which can then be used to

understand drivers of dynamics (gene logic in the cellular context), via perturbation

of this deep model.

While our experiments apply this work specifically to cellular dynamics, these penalties
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can be used in many other situations where we would like to model dynamics based on

cross-sectional population level data.

Figure 6.1: TrajectoryNet learns trajectories of particles from distributions sampled over
time. We use a Neural ODE to learn the derivative of the dynamics function. To find the
output at time t1 for a given input at time t0 we integrate T times letting the ODE solver
choose the integration timepoints.

6.2 Background and Related Work

Optimal Transport. Introduced originally by [145] and in modern form by [100], the

linear program formulation of static optimal transport (OT) has the relatively high cost of

O(n3) for discrete measures. Recently, there have been a number of fast approximations

using entropic regularization. Cuturi [50] presented a parallel algorithm for the discrete

case as an application of Sinkhorn’s algorithm [190]. Recent effort approximates OT on

subspaces [151] or even a single dimension [110]. These efforts emphasis the importance

to the field of obtaining fast OT algorithms. Another direction that has recently received

increased attention is in unbalanced optimal transport where the goal is to relax the problem

to add and remove mass [16, 44, 129, 181]. While many efficient static optimal transport

algorithms exist, and recently for the unbalanced case [219], much less attention has focused

on dynamic optimal transport, the focus of this work.

Dynamic Optimal Transport. Another formulation of optimal transport is known as

dynamic optimal transport. Benamou and Brenier [17] showed how the addition of a natural

time interpolation variable gives an alternative interpretation with links to fluid dynamics
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that surprisingly leads to a convex optimization problem. However, while solvers for the

discretized dynamic OT problem are effective in low dimensions and for small problems

they require a discretization of space into grids giving cost exponential in the dimension

(See Peyré and Cuturi [165] Chap. 7 for a good overview of this problem). One of our main

contributions is to provide an approximate solver for high dimensional smooth problems

using a neural network.

Single-cell Trajectories from a Static Snapshot. Temporal interpolation in single-

cell data started with solutions that attempt to infer an axis within one single time point

of data cell “pseudotime” – used as a proxy for developmental progression – using known

markers of development and the asynchronous nature of cell development [202, 20]. An

extensive comparison of 45 methods for this type of analysis gives method recommendations

based on prior assumptions on the general structure of the data [177]. However, these

methods can be biased and fail in a number of circumstances [214, 118] and do not take

into account experimental time.

Matching Populations from Multiple Time Points. Recent methods get around

some of these challenges using multiple timepoints [87, 181, 219]. However, these methods

generally resort to matching populations between coarse-grained timepoints, but do not

give much insight into how they move between measured timepoints. Often paths are

assumed to minimize total Euclidean cost, which is not realistic in this setting. In contrast,

the methods that estimate dynamics from single timepoints [113, 22, 63, 89] have the

potential to give relatively accurate estimation of local direction, but cannot give accurate

global estimation of distributional shift. A recent line of work on generalizing splines to

distributions [41, 19] investigates this problem from a theoretical perspective, but provides

no efficient implementation.

With TrajectoryNet, we aim to unite these approaches into a single model combining in

inferring continuous time trajectories from multiple timepoints, globally, while respecting

local dynamics within a single timepoint.
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6.3 Preliminaries

We provide an overview of static optimal transport, dynamic optimal transport [17], and

continuous normalizing flows.

6.3.1 The Monge-Kantorovich Problem

We adopt notation from the standard text [206]. For two probability measures µ, ν defined

on X ⊂ Rn, let Π(µ, ν) denote the set of all joint probability measures on X × X whose

marginals are µ and ν. Then the p-Kantorovich distance (or Wasserstein distance of order

p)between µ and ν is

W (µ, ν)p :=

(
inf

π∈Π(µ,ν)

∫
X×Y

d(x, y)pdπ(x, y)

)1/p

, (6.1)

where p ∈ [1,∞). This formulation has led to many useful interpretations both in GANs

and biological networks. For the entropy regularized problem, the Sinkhorn algorithm [190]

provides a fast and parallelizable numerical solution in the discrete case. Recent work tackles

computationally efficient solutions to the exact problem [97] for the discrete case. However,

for the continuous case solutions to the discrete problem in high dimensional spaces do not

scale well. As the rate of convergence of the empirical Wasserstein metric between empirical

measures µ̂ and ν̂ with bounded support is shown in [58] to be

E[|Wp(µ̂n, ν̂n)−Wp(µ, ν)|] = O(n−
1
d ) (6.2)

where d is the ambient dimension. However, recent work shows that in high dimensions a

more careful treatment that the rate depends on the intrinsic dimension not the ambient

dimension [213]. As long as data lies in a low dimensional manifold in ambient space, then

we can reasonably approximate the Wasserstein distance. In this work we approximate the

support of this manifold using a neural network.

6.3.2 Dynamic Optimal Transport

Benamou and Brenier [17] defined and explored a dynamic version of Kantorovich distance.
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Their work linked optimal transport distances with dynamics and partial differential equa-

tions (PDEs). For a fixed time interval [t0, t1] with smooth enough, time dependent density

and velocity fields, P (x, t) ≥ 0, f(x, t) ∈ Rd, subject to the continuity equation

∂tP +∇ · (Pf) = 0 (6.3)

for t0 < t < t1 and x ∈ Rd, and the conditions

P (·, t0) = µ, P (·, t1) = ν (6.4)

we can relate the squared L2 Wasserstein distance to (P, f) in the following way

W (µ, ν)2
2 = inf

(P,f)
(t1 − t0)

∫
Rd

∫ t1

t0

P (x, t)|f(x, t)|2dtdx (6.5)

In other words, a velocity field f(x, t) with minimum L2 norm that transports mass at µ to

mass at ν when integrated over the time interval is the optimal plan for an L2 Wasserstein

distance. The continuity equation is applied over all points of the field and asserts that

no point is a source or sink for mass. The solution to this flow can be shown to follow

a pressureless flow on a time-dependent potential function. Mass moves with constant

velocity that linearly interpolates between the initial and final measures. For problems where

interpolation of the density between two known densities is of interest, this formulation is

very attractive. Existing computational methods for solving the dynamic formulation for

continuous measures approximate the flow using a discretization of space-time [156]. This

works well in low dimensions, but scales poorly to high dimensions as the complexity is

exponential in the input dimension d. We next give background on continuous normalizing

flows, which we show can provide a solution with computational complexity polynomial in

d.

6.3.3 Continuous Normalizing Flows

A normalizing flow [170] transforms a parametric (usually simple) distribution to a more

complicated one. Using an invertible transformation f applied to an initial latent random
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variable y with density Py, We define x = f(y) as the output of the flow. Then by the

change of variables formula, we can compute the density of the output x:

logPx(·) = logPy(·)− log

∣∣∣∣det
∂f

∂y

∣∣∣∣ (6.6)

A large effort has gone into creating architectures where the log determinant of the

Jacobian is efficient to compute [170, 105, 157].

Now consider a continuous-time transformation, where the derivative of the transforma-

tion is parameterized by θ, thus at any timepoint t, ∂x(t)
∂t = fθ(x(t), t). At the initial time

t0, x(t0) is drawn from a distribution P (x, t0) which we also denote Pt0(x) for clarity, and

it’s continuously transformed to x(t1) by following the differential equation fθ(x(t), t):

x(t1) = x(t0) +

∫ t1

t0

fθ(x(t), t)dt, x(t0) ∼ Pt0(x),

logPt1(x(t1)) =

logPt0(x(t0))−
∫ t1

t0

Tr

(
∂fθ(x(t), t)

∂x(t)

)
dt, (6.7)

where at any time t associated with every x through the flow can be found by following the

inverse flow. This model is referred as continuous normalizing flows (CNFs) [38]. It can

be likened to the dynamic version of optimal transport, where we model the measure over

time rather than the mapping from Pt0 to Pt1

Unsurprisingly, there is a deep connection between CNFs and dynamic optimal trans-

port. In the next section we exploit this connection and show how CNFs can be used

to provide a high dimensional solution to the dynamic optimal transport problem with

TrajectoryNet.

6.4 TrajectoryNet: Efficient Dynamic Optimal Transport

In this section, we first describe how to adapt continuous normalizing flows to approximate

dynamic optimal transport in (Section 6.4.1). We then describe further adaptations for

analysis of single-cell data in (Section 6.4.2) and finally provide training details in (Section
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Figure 6.2: Transporting a Gaussian (a) to an S-curve (b) via (c) static optimal transport,
(d) Base TrajectoryNet without regularization follows density (e) TrajectoryNet with energy
regularization demonstrates more straight paths similar to OT.

6.4.3).

6.4.1 Dynamic OT Approximation via Regularized CNF

Continuous normalizing flows use a maximum likelihood objective which can be equiva-

lently expressed as a KL divergence. In TrajectoryNet we add an energy regularization to

approximate dynamic OT. Dynamic OT is expressed with an optimization over flows with

constraints at t0 and t1 (see eq. equation 6.4). By relaxing this constraint to minimizing a

divergence at t1 CNFs can approximate dynamic OT.

For sufficiently large λ under constraint equation 6.3 this converges to the optimal

solution in equation 6.5. This is encapsulated in the following theorem. See Appendix 6.A.1

for proof.

Theorem 6.4.1. With time varying field f(x, t) : Rd × R → Rd and density P (x, t) :

Rd × R → R+ such that
∫
P (x, t)dx = 1 for all t0 ≤ t ≤ t1 and subject to the continuity
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equation 6.3. There exists a sufficiently large λ such that

W (µ, ν)2
2 = (t1 − t0) inf

(P,f)
E

x0∼µ

[∫ t1

t0

‖f(x(t), t)‖2 dt
]

+ λKL(P (·, t1) ‖ ν); s.t. P (·, t0) = µ

Intuitively, a continuous normalizing flow with a correctly scaled penalty on the squared

norm of f approximates the W2 transport between µ and ν. Dynamic optimal transport

can be thought of as finding a distribution over paths such that the beginnings of the paths

match the source distribution, end of the path matches the target distribution, and the cost

of the transport is measured by expected path length. Continuous normalizing flows relax

the target distribution match with a KL-divergence penalty. When the KL-divergence is

small then the constraint is satisfied. However, CNFs usually do not enforce the path length

constraint, which we add using a penalty on the norm of f as defined by the Neural ODE.

When we impose this penalty over uniformly sampled data, this is equivalent to penalizing

the expected path length.

We can approximate the first part of this continuous time equation using a Riemann

sum as Ex0∼µ

[∫ t1
t0
‖fθ(x, t)‖2 dt

]
=
∑

x∼Pt0

∑t1
i=t0

∆ti ‖fθ(x, t)‖2. This requires a forward

integration using a standard ODE solver to compute as shown in Chen et al. [38]. If

we consider the case where the divergence is small, then this can be combined with the

standard backwards pass for even less added computation. Instead of penalizing ‖fθ(x, t)‖2

on a forward pass, we penalize the same quantity on a backwards pass. Using the maximum

likelihood and KL divergence equivalence, we obtain a loss

L(x) = − log p(x) + λe

∫
t
‖f(x(t), t)‖2 (6.8)

Where the integral above is computed using an ODE solver. In practice, both a penalty on

the Jacobian or additional training noise helped to get straight paths with a lower energy

regularization λe. We found that a value of λe large enough to encourage straight paths,

unsurprisingly also shortens the paths undershooting the target distribution. To counteract

this, we add a penalty on the norm of the Jacobian of f as used in Vincent et al. [208], Rifai
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et al. [171]. Since f represents the derivative of the path, this discourages paths with high

local curvature, and can be thought of as penalizing the second derivative (acceleration) of

the flow. Our energy loss is then

Lenergy(x) = λe

∫
t
‖f(x̃, t)‖2 + λj

∫
t
‖Jf (x̃)‖2F , (6.9)

where ‖Jf (x)‖2F is the Frobenius norm of the Jacobian of f . Comparing Figure 6.2(e)

to (d) we demonstrate the effect of this regularization. Without energy regularization

TrajectoryNet paths follow the data. However, with energy regularization we approach the

paths of the optimal map. TrajectoryNet solution biases towards undershooting the target

distribution. Our energy loss gives control over how much to penalize indirect, high energy

paths.

Optimal transport is traditionally performed between a source and target distribution.

Extensions to a series of distributions is normally done by performing optimal transport

between successive pairs of distributions as in Schiebinger et al. [181]. This creates flows

that have discontinuities at the sampled times, which may be undesirable when the under-

lying system is smooth in time as in biological systems. The dynamic model approximates

dynamic OT for two timepoints, but by using a single smooth function to model the whole

series the flow becomes the minimal cost smooth flow over time.

6.4.2 Further Adaptation for Single-Cell Trajectories

Up to this point we have shown how to perform dynamic optimal transport in high dimen-

sions with a regularized CNF. We now introduce priors needed to mimic cellular systems

that are characterized by growth/death rather than just transport, endowed with a mani-

fold structure, and knowledge of local velocity arrows. Similar priors may also be applicable

to other data types. For example in studying the dynamics of a disease, people may be

newly infected or cured, we may have knowledge on acceptable transition states, indicating

a density penalty, or visits may be clustered such as in a hospital stay so we may have

estimates of near term patient trends, indicating the use of velocity priors. To enforce these

priors we add corresponding regularizations listed below:
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1. A growth rate regularization that accommodates unbalanced transport, described in

Section 6.4.2.

2. A density-based penalty which encourages interpolations that lie on dense regions of

the data. Often data lies on a low-dimensional manifold, and it is desirable for paths

to follow this manifold at the cost of higher energy (See Section 6.4.2 for details).

3. A velocity regularization where we enforce local estimates of velocity at measured

datapoints to match the first time derivative of cell state change. (See Section 6.4.2

for details).

These regularizations are summarized in a single loss function defined as

LT =

Normalizing Flow︷ ︸︸ ︷
k∑
i=1

− logPti(xti) + Lenergy︸ ︷︷ ︸
Dynamic OT

+ Ldensity + Lvelocity + Lgrowth︸ ︷︷ ︸
Biological priors

(6.10)

Allowing Unbalanced Optimal Transport

We use a simple and computationally efficient method that adapts discrete static unbalanced

optimal transport to our framework in the continuous setting. This is a necessary extension

but is by no means a focus of our work. While we could also apply an adversarial framework,

we choose to avoid the instabilities of adversarial training and use a simple network trained

from the solution to the discrete problem. We train a network G(x, t) : Rd × [0, 1] → R+,

which takes as input a cell state and time pair and produces a growth rate of a cell at

that time. This is trained to match the result from discrete optimal transport. For further

specification see Appendix 6.B. We then fix weights of this network and modify the way we
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integrate mass over time to

logMti(x) = logMti−1(x)−
∫ ti

ti−1

Tr

(
∂fθ(x(t), t)

∂x(t)

)
dt

+ logG(xti−1 , ti−1) (6.11)

We note that adding growth rate regularization in this way does not guarantee conservation

of mass. We could normalize M(x) to be a probability distribution during training, e.g.,

as P (x) = M(x)/
∑

x∈RdM(x). However, this now requires an integration over Rd, which

is too computationally costly. Instead, we use the equivalence of the maximum likelihood

formulation over a fixed growth function g and normalize it after the network is trained.

Enforcing Transport on a Manifold

Methods that display or perform computations on the cellular manifold often include an

implicit or explicit way of normalizing for density and model data geometry. PHATE [148]

uses scatter plots and adaptive kernels to display the geometry. SUGAR [130] explicitly

models the data geometry. We would like to constrain our flows to the manifold geometry

but not to its density. We penalize the flow such that it is always close to at least a few

measured points across all timepoints.

Ldensity(x, td) =∑
k

max(0,min-k
(
{‖x(td)− z‖ : z ∈ X}

)
− h) (6.12)

This can be thought of as a loss that penalizes points until they are within h Euclidean

distance of their k nearest neighbors. We use h = 0.1 and k = 5 in all of our experiments.

We evaluate Ldensity on an interpolated time td ∈ (t0, tk) every batch.

Conforming to known Velocity

Often it is the case where it is easy to measure direction of change in a short time horizon,

but not have good predictive power at the scale of measured timesteps. In health data, we

can often collect data from a few visits over a short time horizon estimating the direction
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of a single patient in the near future. In single-cell data, RNA-velocity [113, 22] provides

an estimates d̂x/dt at every measured cell. We use these measurements to regularize the

direction of flow at every measured point. Our regularization requires evaluating f(x, t)

periodically at every measured cell adding the regularization:

Lvelocity(x, t, d̂x/dt) = cosine-similarity(f(x, t), d̂x/dt)

=
f(x, t) · d̂x/dt

‖f(x, t)‖
∥∥∥d̂x/dt∥∥∥ (6.13)

This encourages the direction of the flow at a measured point to be similar to the direction

of local velocity. This ignores the magnitude of the estimate, and only heeds the direction.

While RNA-velocity provides some estimate of relative speed, the vector length is considered

not as informative, as it is unclear how to normalize these vectors in a system specific

way [113, 22]. We note that while current estimates of velocity can only estimate direction,

this does not preclude future methods that can give accurate magnitude estimates. Lvelocity

can easily be adapted to take magnitudes into account by considering L2 similarity for

instance.

6.4.3 Training

For simplicity, the neural network architecture of TrajectoryNet consists of three fully con-

nected layers of 64 nodes with leaky ReLU activations. It takes as input a cell state and

time and outputs the derivative of state with respect to time at that point. To train a con-

tinuous normalizing flow we need access to the density function of the source distribution.

Since this is not accessible for an empirical distribution we use an additional Gaussian at

t0, defining Pt0(·) = N (0, 1), the standard Gaussian distribution, where Pt(x) is the density

function at time t.

For a training step we draw samples xti ∼ Xti for i ∈ {1, . . . , k} and calculate the loss

with a single backwards integration of the ODE. In the following sections we will explain

how adding the individual penalty terms achieve regularized trajectories. While there are a

number of ways to computationally approximate these quantities, we use a parallel method
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to iteratively calculate the logPti based on logPti−1 . To make a backward pass through

all timepoints we start at the final timepoint, integrate the batch to the second to last

timepoint, concatenate these points to the samples from the second to last timepoint, and

continue till t0, where the density is known for each sample. We note that this can compound

the error especially for later timepoints if k is large or if the learned system is stiff, but

gives significant speedup during training.

To sample from Pti we first sample x̂t0 ∼ Pt0 then use the adjoint method to perform

the integration x̂ti = x̂t0 +
∫ ti
t0
fθ(x(t), t)dt; x(0) = x̂t0 .

6.5 Experiments

All experiments were performed with the TrajectoryNet framework with a network of con-

sisting of three layers with LeakyReLU activations. Optimization was performed on 10,000

iterations of batches of size 1,000 using the dopri5 solver [57] with both absolute and rel-

ative tolerances set to 1 × 10−5 and the ADAM optimizer [103] with learning rate 0.001,

and weight decay 5 × 10−5 as in [81]. We evaluate using three TrajectoryNet models with

different regularization terms. The Base model refers to a standard normalizing flow. +E

adds Lenergy, +D adds Ldensity,+V adds Lvelocity, and +G adds Lgrowth.

Comparison to Existing Methods. Since there are no ground truth methods to cal-

culate the trajectory of a single cell we evaluate our model using interpolation of held-out

timepoints. We leave out an intermediary timepoint and measure the Kantorovich-distance

also known as the earth mover’s distance (EMD) between the predicted and held-out dis-

tributions. For EMD lower is more accurate. We compare the distribution interpolated by

TrajectoryNet with four other distributions. The previous timepoint, the next timepoint, a

random timepoint and the McCann interpolant in the discrete OT solution as used in [181].

6.5.1 Artificial Data

For artificial data where we have known paths, we can measure the mean squared error

(MSE) predicted by the model based on the first timepoint. Here we leave out the middle
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Figure 6.3: Density regularization or velocity regularization can be used to follow a 1D
manifold in 2D.

EMD MSE
Arch Cycle Tree Arch Cycle Tree

Base 0.691 0.037 0.490 0.300 0.190 0.218
Base + D 0.607 0.049 0.373 0.236 0.191 0.145
Base + V 0.243 0.033 0.143 0.107 0.068 0.098
Base + D + V 0.415 0.034 0.252 0.156 0.081 0.132

OT 0.644 0.032 0.492 0.252 0.192 0.196
prev 1.086 0.035 1.092 0.652 0.192 0.666
next 1.090 0.035 1.068 0.659 0.192 0.689
rand 0.622 0.406 0.420 0.243 0.346 0.161

Table 6.1: Shows the Wasserstein distance EMD and MSE for artificial datasets between
the left out timepoint and the predicted points for our two generated datasets. Mean over
3 seeds.

timepoint t1/2 for training then calculate the MSE between the predicted point at time

t1/2 and the true point at t1/2 for 5000 sampled trajectories. This gives a measure of how

accurately we can model simple dynamical systems.

We first test TrajectoryNet on two datasets where points lie on a 1D manifold in 2D

with Gaussian noise (See Figure 6.4). First two half Gaussians are sampled with means

zero and one in one dimension. These progressions are then lifted onto curved manifolds in

two dimensions either an arch or a tree mimicking a differentiating system where we have

two sampled timepoints that have some overlap. Table 6.1 shows the Wasserstein distance

(EMD) and the mean squared error for different interpolation methods between the inter-

polated distribution at t1/2 and the true interpolated distribution at t1/2. Because optimal

transport considers the shortest Euclidean distance, the base model and OT methods follow

the lowest energy path, which is straight across. With density regularization or velocity

regularization TrajectoryNet learns paths that follow the density manifold. Figure 6.3 and

98



Figure 6.4: A 1D distribution of data over time embedded in two dimensions along a smooth
manifold. On a single branch (left), with a tree structure (center), and circle (right).

Figure 6.10 demonstrate how TrajectoryNet with density or velocity regularization learns

to follow the manifold.

A third artificial dataset shows the necessity of using velocity estimates for some data.

Here we have an unchanging distribution of points distributed uniformly over the unit circle,

but are traveling counterclockwise at π/5 radians per unit time. This is similar to the cell-

cycle process in adult systems. Without velocity estimates it is impossible to pick up this

type of dynamical system. This is illustrated by the MSE of the cycle dataset using velocity

regularization in Table 6.1.

6.5.2 Single-Cell Data

We run our model on 5D PCA due to computational constraints, but note that computation

time scales roughly linearly with dimension for our test cases (See Appendix 6.C), which
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Figure 6.5: Cell growth model learned on Embryoid Body Data [148]

is consistent to what was found in Grathwohl et al. [81]. Since there are no ground truth

trajectories in real data, we can only evaluate using distributional distances. We do leave-

one-out validation, training the model on all but one of the intermediate timepoints then

evaluating the EMD between the validation data and the model’s predicted distribution.

We evaluate and compare our method on two single-cell RNA sequencing datasets.

rep1 rep2 mean

Base 0.888 ± 0.07 0.905 ± 0.06 0.897 ± 0.06
Base + D 0.882 ± 0.03 0.895 ± 0.03 0.888 ± 0.03
Base + V 0.900 ± 0.09 0.898 ± 0.10 0.899 ± 0.10
Base + D + V 0.851 ± 0.08 0.866 ± 0.07 0.859 ± 0.07

OT 1.098 1.095 1.096
prev 1.628 1.573 1.600
next 1.324 1.391 1.357
rand 1.333 1.288 1.311

Table 6.2: Shows the Wasserstein distance between the left out timepoint and the predicted
distribution for various methods on a 4 timepoint mouse embryo cortex dataset. Mean and
standard deviation over 3 seeds.

Mouse Cortex Data. 2 The first dataset has structure similar to the Arch toy dataset.

It consists of cells collected from mouse embryos at days E12.5, E14.5, E16, and E17.5. In

Figure 6.6(d) we can see at this time in development of the mouse cortex the distribution

of cells moves from a mostly neural stem cell population at E12.5 to a fairly developed

and differentiated neuronal population at E17.5 [48, 101]. The major axis of variation is

neuron development. Over the 4 timepoints we have 2 biological replicates that we can

2. For videos of the dynamics learned by TrajectoryNet see http://github.com/krishnaswamylab/

TrajectoryNet
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use to evaluate variation between animals. In Table 6.2, we can see that TrajectoryNet

outperforms baseline models, especially when adding density and velocity information. The

curved manifold structure of this data, and gene expression data in general means that

methods that interpolate with straight paths cannot fully capture the structure of the data.

Since TrajectoryNet models full paths between timepoints, adding density and velocity

information can bend the cell paths to follow the manifold utilizing all available data rather

than two timepoints as in standard optimal transport.

Embryoid body Data. Next, we evaluate on a differentiating Embryoid body scRNA-

seq time course. Figure 6.7 shows this data projected into two dimensions using a non-linear

dimensionality reduction method called PHATE [148]. This data consists of 5 timepoints

of single cell data collected in a developing human embryo system (Day 0-Day 24). See

Figure 6.5 for a depiction of the growth rate. Initially, cells start as a single stem cell

population, but differentiate into roughly 4 cell precursor types. This gives a branching

structure similar to our artificial tree dataset. In Table 6.3 we show results when each of

the three intermediate timepoints are left out. In this case velocity regularization does not

seem to help, we hypothesis this has to do with the low unspliced RNA counts present in the

data (See Figure 6.11). We find that energy regularization and growth rate regularization

help only on the first timepoint, and that density regularization helps the most overall.

We can also project trajectories back to gene space. This gives insights into when

populations might be distinguishable. In Figure 6.8, we demonstrate how TrajectoryNet

can be projected back to the gene space. We sample cells from the end of the four main

branches, then integrate TrajectoryNet backwards to get their paths through gene space.

This recapitulates known biology in Moon et al. [148]. See appendix 6.D for a more in-depth

treatment.

6.6 Conclusion

TrajectoryNet computes dynamic optimal transport between distributions of samples at

discrete times to model realistic paths of samples continuously in time. In the single-cell
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t=1 t=2 t=3 mean

Base 0.764 0.811 0.863 0.813
Base + D 0.759 0.783 0.811 0.784
Base + V 0.816 0.839 0.865 0.840
Base + D + V 0.930 0.806 0.810 0.848
Base + E . 0.737 0.896 0.842 0.825
Base + G 0.700 0.913 0.829 0.814

OT 0.791 0.831 0.841 0.821
prev 1.715 1.400 0.814 1.309
next 1.400 0.814 1.694 1.302
rand 0.872 1.036 0.998 0.969

Table 6.3: Shows the Wasserstein distance (EMD) between the left out timepoint and the
predicted distribution for various methods on the 5 timepoint Embryoid body dataset.

case, TrajectoryNet ”reanimates,” cells which are destroyed by measurement to recreate a

continuous-time trajectory. This is also relevant when modeling any underlying system that

is high-dimensional, dynamic, and non-linear. In this case, existing static OT methods are

under-powered and do not interpolate well to intermediate timepoints between measured

ones. Existing dynamic OT methods (non-neural network based) are computationally in-

feasible for this task.

In this work we integrate multiple priors and assumptions into one model to bias Trajec-

toryNet towards more realistic dynamic optimal transport solutions. We demonstrated how

this gives more power to discover hidden and time specific relationships between features.

In future work, we would like to consider stochastic dynamics [125] and learning the growth

term together with the dynamics.
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Figure 6.6: Shows the first 2 PCs of the mouse cortex dataset. (a-c) show the distributions
for the first three timepoints. (d) shows the distribution of cells over PC1. the interpolated
points for E14.5 using (e) static OT, and (f) TrajectoryNet with density regularization.
(g-i) shows expression of three markers of early (Pax6) mid (Eomes) and late (Tbr1) stage
neurons.
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Figure 6.7: Shows the Embryoid body dataset projected into 2D with PHATE [148] with
paths and densities imputed using TrajectoryNet.

Figure 6.8: For curated endpoints, shows location on PHATE dimensions, TrajectoryNet
paths projected into PCA space, and trajectories for 4 genes.
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Appendix

6.A Technical Details

6.A.1 Proof of Theorem 6.4.1

First, we apply the Lagrange multiplier method by introducing the variable λ to the mini-

mization problem of equation 6.5 subject to constraints equation 6.4. As we always begin

with the base distribution and at any time t, x is defined by f(x, t) and the initial value

x(t0) = x0, which has KL(P (t0, ·) ‖ µ) = 0.

inf
(P,f)

sup
λ

(t1 − t0) E
x0∼µ

∫ t1

t0

P (x, t) |f(x, t)|2 dt

+ λKL(P (t1, ·) ‖ ν)

(6.14)

The expectation part is equivalent to
∫
Rd
∫ t1
t0
P (x, t) |f(x, t)|2 dtdx, and we use inter-

changeably in the the remaining of the proof. Since the KL divergences are non-negative,

λ ≥ 0. The optimal solution of the min-max problem is the optimal solution to the original

problem. Consider the true minimal loss given by the optimal solution to be c, we know

that L(λ) ≤ c, where

L(λ) = sup
λ≥0

inf
(P,f)

(t1 − t0) E
x0∼µ

∫ t1

t0

P (x, t) |f(x, t)|2 dt

+ λKL(P (t1, ·) ‖ ν)

(6.15)

In order to show that the solution of the max-min problem converges to c, we first
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show that it is monotonic in λ. For easier reading, set E =
∫
Rd
∫ t1
t0
P (x, t) |f(x, t)|2 dtdx,

M = KL(P (t1, ·) ‖ ν). Both E and M are functions of f . For any pair of E,M values,

if λ1 > λ2, E + λ1M > E + λ2M . Thus the maximum and minimum of the function

L = E + λM is also monotonic in λ, and it will converge to the supremum.

Next, we show that the divergence term M(f) decreases monotonically as λ increases,

and it converges to 0 as λ goes to infinity. For a given λ, let f∗λ = arg inf E(f) +λM(f). By

definition, E(f∗λ1
) + λ1M(f∗λ1

) ≤ E(f∗λ2
) + λ1M(f∗λ2

), and E(f∗λ1
) + λ2M(f∗λ1

) ≥ E(f∗λ2
) +

λ2M(f∗λ2
). Thus (λ1 − λ2)(M(f∗λ1

)−M(f∗λ2
)) ≤ 0. If λ1 > λ2,then M(f∗λ1

)−M(f∗λ2
) ≤ 0.

The sequence M(f) decreases monotonically as λ increases. Because L(λ) is upper bounded

by c and M(f) ≥ 0, M(f) converges to zero as λ goes to infinity.

Now we have shown that L(λ) is a monotone sequence and is upper bounded by c, and

that the divergence term M converges to zero, we next show that L converges to c, and

that the optimal solution of the max-min problem in equation 6.15 is the optimal solution

of the original problem. Since the divergence term is non-negative, we have a lower bound

for L(λ) as

∀λ, L(λ) ≥ inf E(f)

s.t. M(f) ≤M(f∗λ)

(6.16)

Because L(λ) is monotonically increasing, andM(f) is monotonically decreasing, H(λ) =

inf E(f) increases as λ increases.

Lemma 6.A.1.

∀ε > 0, ∀f, s.t. M(f) ≤ ε,

∃f̂ , s.t. M(f̂) = 0, and

E(f̂)− E(f) ≤ D2

√
2T

4√
ε(1 +

4√
ε)

where D is the diameter of the probability space and T is the transformation completion

time.
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Proof. For a certain λ, starting from the base distribution µ, at time T the distribution is

transformed, by following f , to ν ′, and KL(ν ′ ‖ ν) = ε. Now consider a different transfor-

mation f̂ , which is composed of two part: the first part is an accelerated f , so that ν ′ is

achieved by time T/(1 + ξ), and the second part is transforming ν ′ to ν in the remaining

time of ξT
(1+ξ) . Thus at time T , by following f̂ , we achieve zero divergence, M(f̂) = 0.

The new transformation f̂ has an increased E, from the acceleration and the additional

transformation.

E(f̂) =
T

1 + ξ

∫
Rd

∫ T
1+ξ

0
P (x, (1 + ξ) t)

|(1 + ξ)f(x, (1 + ξ)t)|2dtdx

+

∫
Z

∫
Y

∫ T

T
1+ξ

M(y, z)
|z − y|2

( ξ
1+ξT )2

dtdydz

(6.17)

where Z has distribution ν, Y has distribution ν ′, and M(y, z) is a mapping from Y to

Z. The first part of E(f̂) is just E(f). The second part is upper bounded by TV (Y,Z)D2

ξ
1+ξ

T
,

where TV (Y, Z) is the total variation between Y and Z, which is in turn upper bounded

by
√
ε/2. We choose ξ = 4√ε.

By definition, E(f̂) ≥ c, as c is the infimum at zero divergence. Assuming L(λ) converges

to c − α, and α > 0, c − α ≥ E(f). Then by Lemma 6.A.1, ∀ε, α < D2
√

2T

4√ε(1 + 4√ε),

and we have a contradiction. Now we complete the proof that L(λ) converges to c and that

for a large enough λ, the solution of the max-min problem equation 6.15 is the solution

of equation 6.5 when subject to conditions equation 6.4.
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6.B Growth Rate Model Training

Our growth network G(x, t) is trained to match the discrete unbalanced optimal transport

problem with entropic regularization:

γ = argminγ < γ,M >F +λ
(∑
i,j

γi,j log(γi,j)
)

+ αKL(γ1, µ) + βKL(γT 1, ν) (6.18)

s.t. γ ≥ 0

Where < ·, · >F is the Frobenius norm of elementwise matrix multiplication of the trans-

portation matrix γ and the cost matrix M , and where λ, α, β are regularization constants

> 0 on the source and target unbalanced distributions µ, ν. Then the growth rate of each

cell i in µ to ν is then

gi = γ(i,·)1 (6.19)

In our experiments we set λ = 0.1, β = 10000 and tune α for reasonable growth rates.

This gives a growth rate at every observed cell; however, our model needs a growth rate

defined continuously at every measured timepoint. For this, we learn a neural network that

is trained to match the growth rate at measured cells and equal to one at negative sampled

points. We use a simple form of negative sampling, for each batch of real points we sample

an equal sized batch of points from a uniform distribution over the [-1,1] hypercube, where

these negative points are given a growth rate value of 1. The network is trained with mean

squared error loss to match these growth rates at all measured times.

6.C Scaling with Dimension

Runtime Considerations. Existing numerical methods for solving dynamic OT rely on

proximal splitting methods over a discretized staggered grid [17, 156, 165]. This results in a

non-smooth but convex optimization problem over these grid points. However, the number

of grid points scales exponentially with the dimension, so these methods are only applicable
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in low dimensions. TrajectoryNet scales polynomially with the dimension. See Figure 6.9

for empirical measurements.

To test the computation time with dimension we run TrajectoryNet for 100 batches

of 1000 points on the mouse cortex dataset over different dimensionalities. For hardware

we use a single machine with An AMD Ryzen Threadripper 2990WX 32-core Processor,

128GB of memory, and three Nvidia TITAN RTX GPUs. Our model is coded in the

Pytorch framework [158]. We count the total number of function evaluations (both forward

and backward) divide the total time by this. In Figure 6.9, you can see the seconds per

evaluation is roughly linear with the dimensionality of the data. This does not imply

convergence of the model is linear in dimension, only that computation per iteration is

linear. As suggested in Grathwohl et al. [81], number of iterations until convergence is

a function of how complicated the distributions are, and less dependent on the ambient

dimension itself. By learning flows along a manifold with Ldensity, our method may scale

closer to the intrinsic dimensionality of the data rather than the ambient.

Figure 6.9: The computation per evaluation is roughly linear in terms of dimension.

6.D Biological Considerations

Quality control and normalization is important when estimating RNA-velocity from existing

single cell measurements. We suspect that the RNA-velocity measurements from the Em-

bryoid body data may be suspect given the low number of unspliced RNA counts present. In

Figure 6.11 we can see that each timepoint consists of around 10%-20% of unspliced RNA.
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Figure 6.10: Density regularization or velocity regularization can be used to follow a 1D
manifold in 2D.

This is relatively low relative to numbers in other recent works [113, 22, 99]. Low unspliced

RNA counts leads to more noise in the estimates of RNA velocity and lower quality.

Figure 6.11: Shows the ratio of spliced, ambiguous, and unspliced RNA counts over the 5
timepoints in the Embryoid body dataset. Mean unspliced here is around 10%-20% of total
counts, in other systems this is near 30% [113].

In Figure 6.8 we showed how TrajectoryNet can be projected back to the gene space.

These projections can be used to infer the differences much earlier in time than they can

be identified in the gene space. Here we have four populations that are easily identified by

marker genes or clustering at the final timepoint. Since all four populations emerge from
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a single relatively uniform stem cell population, the question becomes how early can we

identify the features of progenitor cells, the cells leading to these differentiated populations.

Since TrajectoryNet models cells as probabilities continuously over time, we can find the

path for each differentiated cell in earlier timepoints. This allows inferences such as the fact

that HAND1, a gene that is generally high in cardiac cells, is high at earlier timepoints, and

may even start to distinguish the population as early as day 6. A gene like ONECUT2 is

only starts to distinguish neuronal populations at later timepoints. For further information

on this particular system see [148] Figure 6.

6.E Reproducibility

To foster reproducibility, we provide as many details as possible on the experiments in the

main paper. Code is available at http://github.com/krishnaswamylab/TrajectoryNet.

6.E.1 2D Examples

In Figure 6.2 we transport a Gaussian to an s-curve. The Gaussian consists of 10000 points

sampled from a standard normal distribution. The s-curve is generated using the sklearn

function sklearn.datasets.make s curve with noise of 0.05, and 10000 samples. We then

take the first and third dimension, and multiply by 1.5 for the proper scaling. To generate

the OT subplot we used the Mccann interpolant from 200 points sampled from the Gaussian.

To generate panel (d), we used the procedure detailed in the beginning of Section 6.5 to

train TrajectoryNet, then sampled 200 points from a Gaussian distribution and used the

adjoint with these points as the initial state at time t0 to generate points at time t1. For

panel (e) we added an energy regularization with λe = 0.1 and λj = 1. These were found by

experimentation, although parameters in the range of λe = [0.01, 1] and λj = [0.1, 1] were

largely visually similar.

To generate the arch and tree datasets we started with two half Gaussians N (·, 1
2π ) at

mean zero and one (as pictured in Figure 6.4) with 5000 points each, then found the Mccann

interpolant at t1/2 as the test distribution. We then lift these into 2d by embedding on the

half circle of radius 1 and adding noise N (0, 0.1) to the radius. To generate velocity, we
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add a velocity tangent to the circle for each point. For the tree dataset we additionally flip

(randomly) half of the points with x > 1 over the line y = 1.

For the Cycle dataset, we start with 5000 uniformly sampled points around the circle,

with radius as N (1, 0.1) We then add an arrow tangent to the circle with magnitude π/5,

Thus in one time unit the points should move 1/10 of the way around the circle.

6.E.2 Single Cell Datasets

Both single cell datasets were sequenced using 10X sequencing. The Embryoid body data

can be found here3 and consists of roughly 30,000 cells unfiltered, and 16,000 cells after

filtering. The mouse cortex dataset is not currently publicly available, but consists of

roughly 20,000 cells after filtering. For both datasets no batch correction was used. Raw

sequences were processed with CellRanger. We then used velocyto [113] to produce the

unspliced and spliced count matrices. We then used the default parameters in ScVelo [22]

to generate velocity arrows on a PCA embedding. These include count normalization across

rows, selection of the 3000 most variable genes, filtering of low quality genes, and smoothing

counts between cells.

For parameters we did a grid search over λdensity ∈ {0, 0.1, 0.01},

λvelocity ∈ {0, 0.001, 0.0001}. For Base+E we did a search of λenergy ∈ {1.0, 0.1, 0.01},

A more extensive search could lead to better results. We intended to show how these

regularizations can be used and demonstrate the viability of this approach rather than fully

explore parameter space.

6.E.3 Software Versioning

The following software versions were used. scvelo==0.1.24, torch==1.3.1,

torchdiffeq==0.0.1, velocyto==0.17.17, scprep==1.0.3, scipy==1.4.1,

scikit-learn==0.22, scanpy==1.4.5

3. https://doi.org/10.17632/v6n743h5ng.1
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Part III

Optimal Transport in Graphs
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Chapter 7

DiffusionEMD

7.1 Introduction

With the profusion of modern high dimensional, high throughput data, the next challenge is

the integration and analysis of collections of related datasets. Examples of this are particu-

larly prevalent in single cell measurement modalities where data (such as mass cytometry, or

single cell RNA sequencing data) can be collected in a multitude of patients, or in thousands

of perturbation conditions [186]. These situations motivate the organization and embedding

of datasets, similar to how we now organize data points into low dimensional embeddings,

e.g., with PHATE [148], tSNE [204], or diffusion maps [46]). The advantage of such organi-

zation is that we can use the datasets as rich high dimensional features to characterize and

group the patients or perturbations themselves. In order to extend embedding techniques

to entire datasets, we have to define a distance between datasets, which for our purposes

are essentially high dimensional point clouds. For this we propose a new form of Earth

Mover’s Distance (EMD), which we call Diffusion EMD1, where we model the datasets as

distributions supported on a common data affinity graph. We provide two extremely fast

methods for computing Diffusion EMD based on an approximate multiscale kernel density

estimation on a graph.

Optimal transport is uniquely suited to the formulation of distances between entire

1. Python implementation is available at https://github.com/KrishnaswamyLab/DiffusionEMD.
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datasets (each of which is a collection of data points) as it generalizes the notion of the

shortest path between two points to the shortest set of paths between distributions. Re-

cent works have applied optimal transport in the single-cell domain to interpolate lin-

eages [181, 219, 198], interpolate patient states [197], integrate multiple domains [52], or

similar to this work build a manifold of perturbations [39]. All of these approaches use the

standard primal formulation of the Wasserstein distance. Using either entropic regulariza-

tion approximation and the Sinkhorn algorithm [50] to solve the discrete distribution case or

a neural network based approach in the continuous formulation [8]. We will instead use the

dual formulation through the well-known Kantorovich-Rubinstein dual to efficiently com-

pute optimal transport between many distributions lying on a common low-dimensional

manifold in a high-dimensional measurement space. This presents both theoretical and

computational challenges, which are the focus of this work.

Specifically, we will first describe a new Diffusion EMD that is an L1 distance between

density estimates computed using multiple scales of diffusion kernels over a graph. Using

theory on the Hölder-Lipschitz dual norm on continuous manifolds [121], we show that as

the number of samples increases, Diffusion EMD is equivalent to the Wasserstein distance

on the manifold. This formulation reduces the computational complexity of computing K-

nearest Wasserstein-neighbors between m distributions over n points from O(m2n3) for the

exact computation to Õ(mn) with reasonable assumptions on the data. Finally, we will

show how this can be applied to embed large sets of distributions that arise from a common

graph, for instance single cell datasets collected on large patient cohorts.

Our contributions include: 1. A new method for computing EMD for distributions over

graphs called Diffusion EMD. 2. Theoretical analysis of the relationship between Diffusion

EMD and the snowflake of a standard EMD. 3. Fast algorithms for approximating Diffusion

EMD. 4. Demonstration of the differentiability of this framework. 5. Application of Diffusion

EMD to embedding massive multi-sample biomedical datasets.
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7.2 Preliminaries

We now briefly review optimal transport definitions and classic results from diffusion ge-

ometry.

Notation. We say that two elements A and B are equivalent if there exist c, C > 0 such

that cA ≤ B ≤ CA, and we denote A ' B. The definition of A and B will be clear

depending on the context.

Optimal Transport. Let µ, ν be two probability distributions on a measurable space Ω

with metric d(·, ·), Π(µ, ν) be the set of joint probability distributions π on the space Ω×Ω,

where for any subset ω ⊂ Ω, π(ω × Ω) = µ(ω) and π(Ω × ω) = ν(ω). The 1-Wasserstein

distance Wd also known as the earth mover’s distance (EMD) is defined as:

Wd(µ, ν) := inf
π∈Π(µ,ν)

∫
Ω×Ω

d(x, y)π(dx, dy). (7.1)

When µ, ν are discrete distributions with n points, then equation 7.1 is computable in O(n3)

with a network-flow based algorithm [165].

Let ‖ · ‖Ld denote the Lipschitz norm w.r.t. d, then the dual of equation 7.1 is:

Wd(µ, ν) = sup
‖f‖Ld≤1

∫
Ω
f(x)µ(dx)−

∫
Ω
f(y)ν(dy). (7.2)

This formulation is known as the Kantorovich dual with f as the witness function. Since

it is in general difficult to optimize over the entire space of 1-Lipschitz functions, many

works optimize the cost over a modified family of functions such as functions parameterized

by clipped neural networks [8], functions defined over trees [115], or functions defined over

Haar wavelet bases [75].

Data Diffusion Geometry Let (M, dM) be a connected Riemannian manifold, we can

assign to M sigma-algebras and look at M as a “metric measure space”. We denote by

∆ the Laplace-Beltrami operator on M. For all x, y ∈ M let ht(x, y) be the heat kernel,
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which is the minimal solution of the heat equation:

(
∂

∂t
−∆x

)
ht = 0, (7.3)

with initial condition limt→0 ht(x, y) = δy(x), where x 7→ δy(x) is the Dirac function centered

at y, and ∆x is taken with respect to the x argument of ht. Note that as shown in Grigor’yan

et al. [83], the heat kernel captures the local intrinsic geometry of M in the sense that as

t→ 0, log ht(x, y) ' −d2
M(x, y)/4t.

Here, in Sec. 7.4.2 (Theorem 7.4.2) we discuss another topological equivalent of the

geodesic distance with a diffusion distance derived from the heat operator Ht := e−t∆ that

characterizes the solutions of the heat equation (equation 7.3), and is related to the heat

kernel via Htf =
∫
ht(·, y)f(y)dy [see 114, 46, 83, for further details].

It is often useful (particularly in high dimensional data) to consider data as sampled

from a lower dimensional manifold embedding in the ambient dimension. This manifold

can be characterized by its local structure and in particular, how heat propagates along

it. Coifman and Lafon [46] showed how to build such a propagation structure over discrete

data by first building a graph with affinities

(Kε)ij := e−‖xi−xj‖
2
2/ε (7.4)

then considering the density normalized operatorMε := Q−1KεQ
−1, whereQii :=

∑
j(Kε)ij .

Lastly, a Markov diffusion operator is defined by

Pε := D−1Mε, where Dii :=
∑
j

(Mε)ij . (7.5)

Both D and Q are diagonal matrices. By the law of large numbers, the operator Pε

admits a natural continuous equivalent P̃ε, i.e., for n i.i.d. points, the sums modulo n

converge to the integrals. Moreover, in Coifman and Lafon [46, Prop. 3] it is shown that

limε→0 P̃
t/ε
ε = e−t∆ = Ht. In conclusion, the operator Pε converges to P̃ε as the sample size

increases and P̃ε provide an approximation of the Heat kernel on the manifold. Henceforth,

we drop the subscript of Pε to lighten the notation, further we will use the notation Pε for
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the operator as well as for the matrix (it will be clear in the context).

7.3 EMD Through the L1 Metric Between Multiscale Den-

sity Estimates

The method of efficiently approximating EMD that we will consider here is the approx-

imation of EMD through density estimates at multiple scales. Previous work has con-

sidered densities using multiscale histograms over images [93], wavelets over images and

trees [187, 75] and densities over hierarchical clusters [115]. Diffusion EMD also uses a

hierarchical set of bins at multiple scales but with smooth bins determined by the heat

kernel, which allows us to show equivalence to EMD with a ground distance of the manifold

geodesic. These methods are part of a family that we call multiscale earth mover’s distances

that first compute a set of multiscale density estimates or histograms where L1 differences

between density estimates realizes an effective witness function and have (varying) equiva-

lence to the Wasserstein distance between the distributions. This class of multiscale EMDs

are particularly useful in computing embeddings of distributions where the Wasserstein dis-

tance is the ground distance, as they are amenable to fast nearest neighbor queries. We

explore this application further in Sec. 7.4.6 and these related methods in Sec. 7.B.1 of the

Appendix.

Figure 7.1: Diffusion EMD first embeds datasets into a common data graph G, then takes
multiscale diffusion KDEs for each of the datasets. These multiscale KDEs are then used
to compute the Diffusion Earth Mover’s Distance between the datasets that can be used in
turn to create graphs and embeddings (PHATE [147] shown here) of the datasets.
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7.4 Diffusion Earth Mover’s Distance

We now present the Diffusion EMD, a new Earth Mover’s distance based on multiscale

diffusion kernels as depicted in Fig. 7.1. We first show how to model multiple datasets as

distributions on a common data graph and perform multiscale density estimates on this

graph.

7.4.1 Data Graphs and Density Estimates on Graphs

Let X = {X1, X2, . . . , Xm}, ∪mj=1Xj ⊆ M ⊂ Rd, be a collection of datasets with ni = |Xi|

and n =
∑

i ni. Assume that the Xi’s are independently sampled from a common underlying

manifold (M, dM) which is a Riemannian closed manifold (compact and without boundary)

immersed in a (high dimensional) ambient space Rd, with geodesic distance dM. Further,

assume that while the underlying manifold is common, each dataset is sampled from a

different distribution over it, as discussed below. Such collections of datasets arise from

several related samples of data, for instance single cell data collected on a cohort of patients

with a similar condition.

Here, we consider the datasets in X as representing distributions over the common data

manifold, which we represent in the finite setting as a common data graph GX = (V,E,w)

with V = ∪mj=1Xj and edge weights determined by the Gaussian kernel (see equation 7.4),

where we identify edge existence with nonzero weights. Then, we associate each Xi with a

density measure µ
(t)
i : V → [0, 1], over the entire data graph. To compute such measures,

we first create indicator vectors for the individual datasets on it, let 1Xi ∈ {0, 1}n be a

vector where for each v ∈ V,1Xi(v) = 1 if and only if v ∈ Xi. We then derive a kernel

density estimate by applying the diffusion operator constructed via equation 7.5 over the

graph G to these indicator functions to get scale-dependent estimators

µ
(t)
i :=

1

ni
P t1Xi , (7.6)

where the scale t is the diffusion time, which can be considered as a meta-parameter [e.g., as

used in 31] but can also be leveraged in multiscale estimation of distances between distribu-
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tions as discussed here. Indeed, as shown in Burkhardt et al. [31], at an appropriately tuned

single scale, this density construction yields a discrete version of kernel density estimation.

7.4.2 Diffusion Earth Mover’s Distance Formulation

We define the Diffusion Earth Mover’s Distance between two datasets Xi, Xj ∈ X as

Wα,K(Xi, Xj) :=
K∑
k=0

‖Tα,k(Xi)− Tα,k(Xj)‖1 (7.7)

where 0 < α < 1/2 is a meta-parameter used to balance long- and short-range distances,

which in practice is set close to 1/2, K is the maximum scale considered here, and

Tα,k(Xi) :=


2−(K−k−1)α(µ

(2k+1)
i − µ(2k)

i ) k < K

µ
(2K)
i k = K

(7.8)

Further, to set K, we note that if the Markov process governed by P converges (i.e., to

its stationary steady state) in polynomial time w.r.t. |V |, then one can ensure that beyond

K = O(log |V |), all density estimates would be essentially indistinguishable as shown by

the following lemma, whose proof appears in the Appendix:

Lemma 7.4.1. There exists a K = O(log |V |) such that µ
(2K)
i ' P 2K1Xi ' φ0 for every

i = 1, . . . , n, where φ0 is the trivial eigenvector of P associated with the eigenvalue λ0 = 1.

To compute the Diffusion EMD Wα,K in equation 7.7 involves first calculating diffusions

of the datasets µ, second calculating differences and weighting them in relation to their

scale, this results in a vector per distribution of length O(nK), and finally computing the

L1 norm between them. The most computationally intensive step, computing the diffusions,

is discussed in further detail in Sec. 7.4.4.

7.4.3 Theoretical Relation to EMD on Manifolds

We now provide a theoretical justification of the Diffusion EMD defined via equation 7.7 by

following the relation established in Leeb and Coifman [121] between heat kernels and the

EMD on manifolds. Leeb and Coifman [121] define the following ground distance for EMD
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over M by leveraging the geometric information gathered from the L1 distances between

kernels at different scales.

Definition 7.4.1. The diffusion ground distance between x, y ∈M is defined as

Dα(x, y) :=
∑
k≥0

2−kα‖h2−k(x, ·)− h2−k(y, ·)‖1,

for α ∈ (0, 1/2), the scale parameter K ≥ 0 and ht(·, ·) the heat kernel on M.

Note that Dα(·, ·) is similar to the diffusion distance defined in Coifman and Lafon [46],

which was based on L2 notions rather than L1 here. Further, the following result from Leeb

and Coifman [121, see Sec. 3.3] shows that the distance Dα(·, ·) is closely related to the

intrinsic geodesic one dM(·, ·).

Theorem 7.4.2. Let (M, dM) be a closed manifold with geodesic distance dM, and let

α ∈ (0, 1/2). The metric Dα(·, ·) defined via Def. 7.4.1 is equivalent to dM(·, ·)2α.

The previous theorem justifies why in practice we let α close to 1/2, because we want

the snowflake distance d2α
M(·, ·) to approximate the geodesic distance of M. The notion of

equivalence established by this result is such that Dα(x, ·) ' d(x, ·)2α. It is easy to verify

that two equivalent metrics induce the same topology. We note that while here we only

consider the Heat kernel, a similar result holds (see Theorem 7.A.1 in the Appendix) for a

more general family of kernels, as long as they satisfy certain regularity conditions.

For a family of operators (At)t∈R+ we define the following metric on distributions; let

µ and ν be two distributions:

ŴAt(µ, ν) = ‖A1(µ− ν)‖1 (7.9)

+
∑
k≥0

2−kα‖(A2−(k+1) −A2−k)(µ− ν)‖1.

The following result shows that applying this metric for the family of operators Ht to get

ŴHt yields an equivalent of the EMD with respect to the diffusion ground distance Dα(·, ·).

Theorem 7.4.3. The EMD between two distributions µ, ν on a closed Riemannian manifold
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(M, dM) w.r.t. the diffusion ground distance Dα(·, ·), defined via Def. 7.4.1, given by

WDα(µ, ν) = inf
π∈Π(µ,ν)

∫
M×M

Dα(x, y)π(dx, dy), (7.10)

is equivalent to ŴHt. That is WDα ' ŴHt, where Ht is the Heat operator on M.

Proof. In Proposition 15 of Leeb and Coifman [121], it is shown that M is separable w.r.t.

Dα(·, ·), hence we can use the Kantorovich-Rubinstein theorem. We let Λα, the space of

functions that are Lipschitz w.r.t. Dα(·, ·) and ‖·‖Λ∗α , the norm of its dual space Λ∗α. The

norm is defined by

‖T‖Λ∗α := sup
‖f‖Λα≤1

∫
M
fdT.

In Theorem 4 of Leeb and Coifman [121], it is shown that both WDα and ŴHt are equivalent

to the norm ‖·‖Λ∗α .

We consider the family of operators (P
t/ε
ε )t∈R+ , which is related to the continuous

equivalent of the stochastic matrix defined in equation 7.5. In practice, we use this family

of operators to approximate the heat operator Ht. Indeed, when we take a small value

of ε, as discussed in Sec. 7.2, we have from Coifman and Lafon [46] that this is a valid

approximation.

Corollary 7.4.4. Let Pε be the continuous equivalent of the stochastic matrix in equa-

tion 7.5. For ε small enough, we have:

Ŵ
P
t/ε
ε
'WDα . (7.11)

Equation 7.11 motivates our use of equation 7.7 to compute the Diffusion EMD. The

idea is to take only the first K terms in the infinite sum Ŵ
P
t/ε
ε

and then choosing ε := 2−K

would give us exactly equation 7.7. We remark that the summation order of equation 7.7

is inverted compared to equation 7.11, but in both cases the largest scale has the largest

weight. Finally, we state one last theorem that brings our distance closer to the Wasserstein

w.r.t. dM(·, ·); we refer the reader to the Appendix for its proof.
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Theorem 7.4.5. Let α ∈ (0, 1/2) and (M, dM) be a closed manifold with geodesic dM.

The Wasserstein distance w.r.t. the diffusion ground distance Dα(·, ·) is equivalent to the

Wasserstein distance w.r.t the snowflake distance dM(·, ·)2α on M, that is WDα 'Wd2α
M
.

Corollary 7.4.6. For each 1 ≤ i, j ≤ m, let Xi, Xj ∈ X be two datasets with size ni and

nj respectively, and let µi and µj be the continuous distributions corresponding to the ones

of Xi and Xj, let K be the largest scale and put N = min(K,ni, nj). Then, for sufficiently

big N →∞ (implying sufficiently small ε = 2−K → 0):

Wα,K(Xi, Xj) 'Wd2α
M

(µi, µj), (7.12)

for all α ∈ (0, 1/2).

In fact we can summarize our chain of thought as follows

Wα,K(Xi, Xj)
(a)
' Ŵ

P
t/ε
ε

(µi, µj)
(b)
' ŴHt(µi, µj)

(c)
' WDα(µi, µj)

(d)
' Wd2α

M
(µi, µj),

where the approximation (a) is due to the fact that the discrete distributions on Xi and

Xj converge respectively to µi and µj when min(ni, nj) → ∞. Further, Wα,K(Xi, Xj)

approximate the infinite series Ŵ
P
t/ε
ε

(µi, µj) as in equation 7.9 when K →∞, note also that

we take ε = 2−K so that the largest scale in equation 7.7 is exactly 2K . The approximation

in (b) comes from the approximation of the heat operator as in Coifman and Lafon [46], (c)

comes from Theorem 7.4.3 and (d) comes from Theorem 7.4.2.

7.4.4 Efficient Computation of Dyadic Scales of the Diffusion Operator

The most computationally intensive step of Diffusion EMD requires computing dyadic scales

of the diffusion operator P times µ to estimate the density of µ(t) at multiple scales which we

will call b. After this embedding, Diffusion EMD between two embeddings bi, bj is computed

as |bi− bj |, i.e. the L1 norm of the difference. Computing the embedding b naively by first

powering P then right multiplying µ, may take up to 2K matrix multiplications which is

infeasible for even moderately sized graphs. We assume two properties of P that makes
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Algorithm 2 Chebyshev embedding

Input: n× n graph kernel K, n×m distributions µ, maximum scale K, and snowflake
constant α.
Output: m× (K + 1)n distribution embeddings b
Q← Diag(

∑
iKij)

Knorm ← Q−1KQ−1

D ← Diag(
∑

iK
norm
ij )

M ←D−1/2KnormD−1/2

UΣUT = M ; U orthogonal, Σ Diagonal
µ(20) ← Pµ←D−1/2MD1/2µ
for k = 1 to K do
µ(2k) ← P 2kµ←D−1/2U(Σ)2kUTD1/2µ

bk−1 ← 2(K−k−1)α(µ(2k) − µ(2k−1))
end for
bK ← µ(2K)

b← [b0, b1, . . . , bK ]

this computation efficient in practice. First, that P is sparse with order Õ(n) non-zero

entries. This applies when thresholding Kε or when using a K-nearest neighbors graph to

approximate the manifold [204, 148]. Second, that P t is low rank for large powers of t.

While there are many ways to approximate dyadic scales of P , we choose from two

methods depending on the number of distributions m compared to the number of points

in the graph n. When m � n, we use a method based on Chebyshev approximation

of polynomials of the eigenspectrum of P as shown in Alg. 2. This method is efficient for

sparse P and a small number of distributions [188]. For more detail on the error incurred by

using Chebyshev polynomials we refer the reader to Trefethen [203, Chap. 3]. In practice,

this requires for the approximating polynomial of J terms, computation of mJ (sparse)

matrix vector multiplications for a worst case time complexity of O(Jmn3), but in practice

is Õ(Jmn) where J is a small constant (see Fig. 7.5(e)). However, while asymptotically

efficient, when m� n in practice this can be inefficient as it requires many multiplications

of the form Pµ.

In the case where m� n, approximating powers of P and applying these to the n×m

collection of distributions µ once is faster. This method is also useful when the full set

of distributions is not known and can be applied to new distributions one at a time in a

data streaming model. A naive approach for computing P 2K would require K dense n× n
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matrix multiplications. However, as noted in Coifman and Maggioni [47], for higher powers

of P , we can use a much smaller basis. We use an algorithm based on interpolative decom-

position [128, 23] to reduce the size of the basis, and subsequently the computation time,

at higher scales. In this algorithm we first determine the approximate rank of P 2k using an

estimate of the density of the eigenspectrum of P as in Dong et al. [56]. We then alternate

steps of downsampling the basis to the specified rank of P 2k with (randomized) interpola-

tive decomposition with steps of powering P on these bases. Informally, the interpolative

decomposition selects a representative set of points that approximate the basis well. In the

worst case this algorithm can take Õ(mn3) time to compute the diffusion density estimates,

nevertheless with sparse P with a rapidly decaying spectrum, this algorithm is Õ(mn) in

practice. For more details see Alg. 5 and Sec. 7.C of the Appendix.

7.4.5 Subsampling Density Estimates

The density estimates created for each distribution are both large and redundant with each

distribution represented by a vector of (K + 1) × n densities. However, as noted in the

previous section, P 2k can be represented on a smaller basis, especially for larger scales.

Intuitively, the long time diffusions of nodes that are close to each other are extremely

similar. Interpolative decomposition [128, 23] allows us to pick a set of points to center

our diffusions kernels such that they approximately cover the graph up to some threshold

on the rank. In contrast, in other multiscale EMD methods the bin centers or clusters

are determined randomly, making it difficult to select the number of centers necessary.

Furthermore, the relative number of centers at every scale is fixed, for example, Quadtree

or Haar wavelet based methods [93, 75] use 2d
k

centers at every scale, and a clustering

based method [115] selects Ck clusters at every scale for some constant C. Conversely, in

Diffusion EMD, by analyzing the behavior of P 2k , we intelligently select the number of

centers needed at each scale based on the approximate rank of P 2k up to some tolerance

at each scale. This does away with the necessity of a fixed ratio of bins at every scale,

allowing adaptation depending on the structure of the manifold and can drastically reduce

the size representations (see Fig. 7.5(c)). For the Chebyshev polynomials method, this

subsampling is done post computation of diffusion scales, and for the method based on
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approximating P 2k directly the subsampling happens during computation. To this point,

we have described a method to embed distributions on a graph into a set of density estimates

whose size depends on the data, and the spectrum decay of P . We will now explore how

to use these estimates for exploring the Diffusion EMD metric between distributions.

7.4.6 Diffusion EMD Based Embeddings of Samples

Our main motivation for a fast EMD computed on related datasets is to examine the space

of the samples or datasets themselves, i.e., the higher level manifold of distributions. In

terms of the clinical data, on which we show this method, this would be the relationship

between patients themselves, as determined by the EMD between their respective single-cell

peripheral blood datasets. Essentially, we create a kernel matrix KX and diffusion operator

PX between datasets where the samples are nodes on the associated graph. This diffusion

operator PX can be embedded using diffusion maps [46] or visualized with a method like

PHATE [147] that collects the information into two dimensions as shown in Sec. 7.5. We

note this higher level graph can be a sparse KNN graph, particularly given that a diffusion

operator on the graph can allow for global connections to be reformed via t-step path

probabilities.

Multiscale formulations of EMD as in equation 7.8 are especially effective when searching

for nearest neighbor distributions under the Wasserstein metric [93, 10] as this distance

forms a normed space, i.e., a space where the metric is induced by the L1 norm of the

distribution vectors and their differences. Data structures such as kd-trees, ball trees,

locality sensitive hashing, are able to take advantage of such normed spaces for sub-linear

neighbor queries. This is in contrast to network-flow or Sinkhorn type approximations that

require a scan through all datapoints for each nearest neighbor query as this metric is not

derived from a norm.

7.4.7 Gradients of the Earth Mover’s Distance

One of the hindrances in the use of optimal transport-based distances has been the fact

that it cannot be easily incorporated into deep learning frameworks. Gradients with re-

spect to the EMD are usually found using a trained Lipschitz discriminator network as in
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Wasserstein-GANs [8], which requires unstable adversarial training, or by taking derivatives

through a small number of iterations of the Sinkhorn algorithm [69, 25, 77, 133], which scales

with O(n2) in the number of points. Tree based methods that are linear in the number of

points do not admit useful gradients due to their hard binning over space, giving a gradient

of zero norm almost everywhere.

We note that, given the data diffusion operator, the computation of Diffusion EMD is

differentiable and, unlike Tree-based EMD, has smooth bins and therefore a non-zero gra-

dient norm near the data (as visible in Fig. 7.2). Further, computation of the gradient only

requires powers of the diffusion operator multiplied by the indicator vector describing the

distribution on the graph. In fact, as mentioned in the supplementary material (Sec. 7.C.1)

for each v ∈ V , the gradient of the Diffusion EMD ∂Wα,K(Xi, Xj)/∂v depends mainly

on the gradients ∂P 2k
ε /∂v for 0 ≤ K which can be expressed in terms of the gradient of

the Gaussian kernel ∂Kε/∂v. This last quantity is easy to compute. In Sec. 7.C.1 of the

Appendix, we give an exact process on computing the gradient of the Diffusion EMD.

7.5 Results

In this section, we first evaluate the Diffusion EMD on two manifolds where the ground

truth EMD with a geodesic ground distance is known, a swiss roll dataset and spherical

MNIST [45]. On these datasets where we have access to the ground truth geodesic distance

we show that Diffusion EMD is both faster and closer to the ground truth than comparable

methods. Then, we show an application to a large single cell dataset of COVID-19 patients

where the underlying metric between cells is thought to be a manifold [147, 111]. We show

that the manifold of patients based on Diffusion EMD by capturing the graph structure,

better captures the disease state of the patients.

Experimental Setup. We consider four baseline methods for approximating EMD:

QuadTree(D) [10] which partitions the dataspace in half in each dimension up to some spec-

ified depth D, ClusterTree(C,D) [115] which recursively clusters the data with C clusters

up to depth D using the distance between clusters to weight the tree edges, and the convo-
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lutional Sinkhorn distance [192] with the same graph as used in Diffusion EMD. QuadTree

and ClusterTree are fast to compute. However, because they operate in the ambient space,

they do not represent the geodesic distances on the manifold in an accurate way. The

convolutional Sinkhorn method represents the manifold well but is significantly slower even

when using a single iteration. For more details on related work and the experimental setup

see Sections 7.B and 7.D of the Appendix respectively.

Figure 7.2: Wasserstein distance of indicator distributions 1x, x ∈ [0, 1] from 10.5 computed
using linear EMD methods L2 distance: (a) ClusterTree (b) QuadTree and (c) Diffusion
EMD.

1D data. We first illustrate the advantages of using Diffusion EMD over tree-based meth-

ods (ClusterTree and QuadTree) on a line graph with 500 points spaced in the interval [0, 1].

In Fig. 7.2 we depict the Wasserrstein distance between an indicator function at each of

these 500 points (1x) and an indicator function at x = 0.5. In the case of indicator functions

the Wasserstein distance is exactly the ground distance. We show three approximations of
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each method, varying the number of trees and the Chebyshev polynomial order respectively.

It is clear that Diffusion EMD achieves a much better approximation of the ground truth

primarily due to its use of smooth bins.

Figure 7.3: Swiss roll dataset embeddings of m = 1000 distributions with n = 10, 000 total
points rotated into 10D colored by ground truth 2D sheet axes. Diffusion EMD recreates
the manifold better in similar time.

Figure 7.4: Accuracy of methods measured via P@10 (left) and Spearman coefficient (right),
against their (log scaled) computation time in seconds on the swiss roll dataset. Variations
of methods are over Chebyshev approximation order for Diffusion EMD, # of trees for tree
methods, and number of iterations for conv. Sinkhorn. Diffusion EMD is more accurate
than tree methods and orders of magnitude faster than conv. Sinkhorn even with a single
iteration.

Swiss roll data. The next application we explore is to a dataset where we have distri-

butions on a manifold for which the geodesic distance is easily computable. In this way
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Figure 7.5: Ablation study of major parameters for Chebyshev polynomial approximation
on the swiss roll dataset. Mean and std. over 10 runs over (a) values of the maximum scale
K, (b) the rank threshold in interpolative decomposition, (c) the total number of centers
in the L1 representation which drops with decomposition, (d-e) performance against the #
of scales, and the order of the polynomial, both are very stable after a certain point, and
(f) time vs. the Chebyshev order.

we can compare to the ground truth EMD between distributions. We generate m = 100

Gaussians on the swiss roll with 100 points each for a total of n = 10, 000 points on the

graph. We compare each method on two metrics, the 10-nearest neighbor accuracy mea-

sured (P@10) where a P@10 of 1 means that the 10-nearest neighbors are the same as the

ground truth. We compare the rankings of nearest neighbors over the entire dataset using

the Spearman-ρ correlation coefficient, which measures the similarity of nearest neighbor

rankings. This coefficient ranges between -1 for inversely ranked lists and 1 for the same

ranks. This measures rankings over the entire dataset equally rather than only considering

the nearest neighbors. Visually, we show embeddings of the swiss roll in Fig. 7.3, where

the 2D manifold between distributions is best captured by Diffusion EMD given a similar

amount of time.

In Fig. 7.4, we investigate the time vs. accuracy tradeoff of a number of fast EMD

methods on the swiss roll. We compare against the ground truth EMD which is calculated

with the exact EMD on the “unrolled” swiss roll in 2D. We find that Diffusion EMD is

more accurate than tree methods for a given amount of time and is much faster than
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the convolutional Sinkhorn method and only slightly less accurate. To generate multiple

models for each dataset we vary the number of trees for tree methods, the Chebyshev order

for Diffusion EMD, and the number of iterations for convolutional Sinkhorn. We search

over and fix other parameters using a grid search as detailed in Sec. 7.D of the Appendix.

In Fig. 7.5, we vary parameters of the Chebyshev polynomial algorithm of Diffusion

EMD. Regarding performance, we find Diffusion EMD is stable to the number of scales

chosen after a certain minimum maximum scale K, Chebyshev polynomial order, and the

number of scales used. By performing interpolative decomposition with a specified rank

threshold on P 2k we can substantially reduce the embedding size at a small cost to perfor-

mance Fig. 7.5(b,c).

Table 7.1: Classification accuracy, P@10, Spearman ρ and runtime (in minutes) on 70,000
distributions from Spherical MNIST.

Accuracy P@10 Spearman ρ Time

Diff. EMD 95.94 0.611 0.673 34m
Cluster 91.91 0.393 0.484 30m
Quad 79.56 0.294 0.335 16m

Spherical MNIST. Next, we use the Spherical MNIST dataset to demonstrate the ef-

ficacy of the interpolative decomposition based approximation to Diffusion EMD, as here

m � n. Each image is treated as a distribution (of pixel intensities) over the sphere. To

evaluate the fidelity of each embedding, we evaluate the 1-NN classification on the embed-

ding vectors in addition to P@10 and Spearman coefficient in Tab. 7.1. Diffusion EMD

creates embeddings that better approximate true EMD over the sphere than tree methods

in a similar amount of time, which in this case also gives better classification accuracy.

Single cell COVID-19 patient data. The COVID-19 pandemic has driven biologists to

generate vast amounts of cellular data on hospitalized patients suffering from severe disease.

A major question in clinicians minds is determining a priori which patients may be at risk

for worse outcomes, including requiring increased ventilatory support and increased risk of
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Figure 7.6: Embedding of 210 patients through different manifold constructions. Visualizing
patient eventual mortality and cell types predictive of disease outcome on each manifold.
Laplacian smoothness reported on each signal for each manifold.

mortality. Certain cell types found in the blood, such as CD16+ Neutrophils, T cells and

non-classical monocytes, have been associated with and predictive of mortality outcome.

Ideally, a manifold of patients would find these cellular populations to occupy a region of

high mortality for CD16+ Neutrophils and non-classical monocytes and low mortality for

T cells. In order to construct a manifold of patients suffering from COVID-19, we analyzed

210 blood samples from 168 patients infected with SARS-CoV-2 measured on a myeloid-

specific flow cytometry panel, an expanded iteration of a previously published dataset [136].

We embedded 22 million cells from these patients into a common combined cell-cell graph

with 27,000 nodes as defined in Sec. 7.4.1. We then computed Diffusion EMD and other

methods on these datasets. Diffusion EMD is computed by using indicator vectors for each

patient converted to density estimates as in equation 7.6.

On an informative embedding of patients, similar patients, with similar features (such

as mortality) would localize on the manifold and thus the important features should be

smooth over the manifold. Furthermore, cell types which are correlated with outcome ei-

ther positively or negatively should also be smooth and either correlated or anticorrelated

with outcome. To quantify this, we compute the smoothness with respect to the patient
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manifold by using a Laplacian quadratic form with respect to the 10-NN graph between

patients. Convolutional Sinkhorn does not scale to this data, so we compare a patient

manifold created with Diffusion EMD to ones created with QuadTree and ClusterTree.

Diffusion EMD is able to use the manifold of cells where QuadTree and ClusterTree are

built in the ambient space. In Fig. 7.6 we visualize relevant signals over the patients using

PHATE [148] overlayed with the quadratic smoothness of the signal over the graph. While

the mortality signal appeared enriched in the right branches of both the Diffusion EMD and

QuadTree manifolds, it did not localize as well on the ClusterTree manifold. Both CD16+

Neutrophils and non-classical monocytes appeared smoother over the Diffusion EMD man-

ifold than the comparison manifolds. Since both cell types are associated with mortality,

it was interesting to see them both enriched in high mortality region of the Diffusion EMD

manifold but not the others. Finally, T cells, which are negatively correlated with mortality

appeared smoothly enriched in the Diffusion EMD manifold in a region with no mortal-

ity. In QuadTree and ClusterTree constructions, T cells appeared enriched throughout the

manifold, no localizing smoothly to a region with low mortality. These experiments show

that the patient manifold constructed with Diffusion EMD is more informative, smoothly

localizing key signals, such as patient outcome and predictive cell types. For a more details

see Sec. 7.D of the Appendix.

7.6 Conclusion

In this work we have introduced Diffusion EMD, a multiscale distance that uses heat kernel

diffusions to approximate the earth mover’s distance over a data manifold. We showed

how Diffusion EMD can efficiently embed many samples on a graph into a manifold of

samples in Õ(mn) time more accurately than similarly efficient methods. This is useful

in the biomedical domain as we show how to embed COVID-19 patient samples into a

higher level patient manifold that more accurately represents the disease structure between

patients. Finally, we also show how to compute gradients with respect to Diffusion EMD,

which opens the possibility of gradients of the earth mover’s distance that scale linearly

with the dataset size.
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Appendix

We first analyze the theoretical framework of Diffusion EMD in Appendix 7.A. Next we

discuss related worki n Appendix 7.B, with a particular focus on multiscale methods for

EMD. In Appendix 7.C we provide further detail on the two algorithms for computing

Diffusion EMD, the first based on Chebyshev approximation, and the second based on

directly powering the diffusion operator while reducing the basis. We discuss gradients

of Diffusion EMD in section 7.C.1. Finally we provide further experimental details in

Appendix 7.D.

7.A General framework and proofs

7.A.1 General framework

We now recall some useful results from Leeb and Coifman [121]. We will only present an

overview, for a rigorous exposition, we suggest Leeb [119], Leeb and Coifman [121] and

Grigor’yan and Liu [82].

We let Z be a sigma-finite measure space of dimension n, d(·, ·) its intrinsic distance and

ξ its associated sigma-finite measure. In order to evaluate the EMD between two measures

on Z, one would need to know d(·, ·). Either directly, by using equation 7.1, or implicitly,

to define the space of Lipschitz functions with respect to d(·, ·) in equation 7.2. One of

the contributions of this paper is to define a kernel based metric Dα(·, ·), where the kernel

depends on α ∈ (0, 1), and show that the metrics Dα(·, ·) and d(·, ·) are closely related.

Next, the objective is to use Dα(·, ·) as the ground distance to compute the EMD in its dual

form. That is a norm between two distributions acting on the space of Lipschitz functions
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with respect to Dα(·, ·). To do so, the authors define Λα the space of functions that are

Lipschitz with respect to Dα(·, ·), and its dual Λ∗α; the space of measures acting on f ∈ Λα.

Further, in order to use the Kantorovich–Rubinstein theorem, they show that the space Z

is separable with respect to the metric Dα(·, ·). Thus, the norm of the dual space ‖·‖Λ∗α
can be used to compute the EMD with Dα(·, ·) as the ground distance. Lastly, they define

two norms ‖·‖(1)
Λ∗α

and ‖·‖(2)
Λ∗α

that are equivalent to ‖·‖Λ∗α on Λ∗. In practice, these norms are

much faster to compute.

The metric Dα(·, ·) is defined using a family of kernels {at(·, ·)}t∈R+ on Z. For each

kernel, we define an operator At as (Atf)(x) =
∫
Z at(x, y)f(y)dξ(y). These kernels must

respect some properties:

• The semigroup property: for all s, t > 0,AtAs = At+s;

• The conservation property:
∫
Z at(x, y)dξ(y) = 1;

• The integrability property: there exists C > 0 such that
∫
Z |at(x, y)|dξ(y) < C, for all

t > 0 and x ∈ Z.

Considering only the dyadic times, that is t = 2−k, we define the kernel pk(·, ·) := a2−k(·, ·)

and the operator Pk = A2−k , for all k ∈ N. By leveraging the local geometric information

gathered from the L1 distance between two measures

Dk(x, y) := ‖pk(x, ·)− pk(y, ·)‖1,

the authors define the following multiscale metric

Dα(x, y) :=
∑
k≥0

2−kαDk(x, y).

To interpret Dk(·, ·) in an intuitive way, consider the case where at(·, ·) defines a random

walk on Z. As a consequence, at(x,B(y, r)) is the probability to move from x to a point

in B(y, r) in t steps. Moreover, for any x ∈ Z, at(x, ·) defines a distribution, therefore

Dk(x, y) is the L1 distance between two distributions induced by the points x and y. Since

these distributions depend on the number of steps t, it is clever to consider a distance that
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includes many scales, just like Dα(·, ·). Another property needs to be verified by the kernel

at(·, ·), this property depends on the distance Dα(·, ·). Namely, the geometric property:

there exist C > 0 and α ∈ (0, 1) such that for all k ∈ N and x ∈ Z

∫
Z
|pk(x, y)|Dα(x, y)dξ(y) ≤ C2−kα.

We need to add three stronger regularity conditions on the kernel at(·, ·), for Dα(·, ·) to

be closely related to the intrinsic distance d(·, ·):

1. An upper bound on the kernel: there exist a non-negative, monotonic decreasing

function φ : R+ → R and β > 0 such that for any γ < β, the function verifies

∫ ∞
0

τn+γ−1φ(τ)dτ

and

|at(x, y)| ≤ t−
n
β φ

(
d(x, y)

t1/β

)
.

2. Hölder continuity estimate: there exist Θ > 0 sufficiently small, such that, for all

t ∈ (0, 1] and all x, y ∈ Z, the distance verifies d(x, y) ≤ t1/β and for all u ∈ Z the

difference between kernels is bounded

|at(x, u)− at(y, u)| ≤ t−
n
β

(
d(x, y)

t1/β

)Θ

φ

(
d(x, y)

t1/β

)
.

3. A local lower bound: there exist a monotonic decreasing function ψ : R+ → R and

R > 0, such that, for all t ∈ (0, 1] and all x, y where d(x, y) < R, we have

|at(x, y)| ≥ t−
n
βψ

(
d(x, y)

t1/β

)
.

It is shown that the heat kernel on a closed Riemannian manifold respects all these condi-

tions [121, see Sec. 3.3].

Definition 7.A.1. A distance d(·, ·)b is a snowflake of a distance d(·, ·) if b ∈ (0, 1). More-

over, the Hölder space is the space of functions that are Lipschitz continuous w.r.t. a
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snowflake distance, hence the terminology used in Leeb and Coifman [121].

We now state an important theorem from Leeb and Coifman [121, Thm. 2].

Theorem 7.A.1. Consider a sigma-finite measure space Z of dimension n with metric

d(·, ·) and a measure ξ such that ξ(B(x, r)) ' rn. If the family of kernels {at(·, ·)}t∈R+

respect the condition 1,2 and 3, then, for 0 < α < min(1,Θ/β), the distance Dα(·, ·) is

equivalent to the thresholded snowflake distance min[1, d(·, ·)αβ].

Remark. In our case, because we used the heat kernel on a closed Riemannian manifoldM,

we had Dα(·, ·) ' dM(·, ·)2α (Thm. 7.4.2). This can be justified from Leeb and Coifman

[121, Cor. 2]. Using the same notation as in the corollary, we define C := maxx,y dM(x, y)2α

(which is finite due to the assumptions on M), thus we can bound the constant B

B =
B

dM(x, y)2α
dM(x, y)2α ≥ B

C
dM(x, y)2α.

The previous theorem closely links the two considered distances. It also motivated the

goal to compute the EMD w.r.t. Dα(·, ·). In Leeb and Coifman [121][Prop. 15], it is shown

that Z is a separable space with respect to the metric Dα(·, ·). Hence, we can use the

Kantorovich-Rubinstein theorem to express the EMD in its dual form.

First, we need to define the space of functions that are Lipschitz with respect to Dα(·, ·).

For a fix α ∈ (0, 1), we note this space by Λα. It corresponds to the set of functions f on Z

such that the norm

‖f‖Λα := sup
x
|f(x)|+ sup

x 6=y

|f(x)− f(y)|
Dα(x, y)

is finite. Next, we need to define the space dual to Λα, which is noted by Λ∗α. For a function

f ∈ Λα and a L1 measure T , we define 〈f, T 〉 :=
∫
Z fdT . The space Λ∗α is the space of L1

measure with the norm

‖T‖Λ∗α := sup
‖f‖Λα≤1

〈f, T 〉.

In practice, this norm would still be computationally expensive. However, the authors show
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that the norms

‖T‖(1)
Λ∗α

:= ‖P ∗0 T‖1 +
∑
k≥0

2−kα‖(P ∗k+1 − P ∗k )T‖1

‖T‖(2)
Λ∗α

:= ‖P ∗0 T‖1 +
∑
k≥0

2−kα‖(P ∗k − P ∗0 )T‖1

are equivalent to the norm ‖·‖Λ∗α on Λ∗α [121, Thm. 4], where P ∗k is the adjoint of Pk.

Finally, using the Kantorovich-Rubinstein theorem, we get

inf
π∈Π(µ,ν)

∫
Z×Z

Dα(x, y)π(dx, dy)‖µ− ν‖Λ∗α ' ‖µ− ν‖
(1)
Λ∗α
' ‖µ− ν‖(2)

Λ∗α
,

where Dα(·, ·) ' min[1, d(·, ·)βα] and d(·, ·) is the ground distance of Z.

In conclusion, using ‖·‖(1)
Λ∗α

or ‖·‖(2)
Λ∗α

yields a norm equivalent to ‖·‖Λ∗α . The norm ‖µ −

ν‖Λ∗α is equal to the Wasserstein distance between the distributions µ and ν with respect

to the ground distance Dα(·, ·).

7.A.2 Proofs of section 4.2

Lemma 1. Assuming that P converges (i.e. to its stationary distribution) in polynomial

time w.r.t. |V |, then there exists a K = O(log |V |) such that µ
(2K)
i ' P 2K1Xi ≈ φ0 for

every i = 1, . . . , n, where φ0 is the trivial eigenvector of P associated with the eigenvalue

λ0 = 1.

Proof. First we notice that P is reversible with respect to πi = Dii/
∑

i

∑
jDij . Since P

is ergodic it converges to its unique stationary distribution π. Moreover, we assumed this

convergence to be in polynomial time w.r.t. |V |, i.e. we define

∆i(k) :=
1

2

∑
j

|P 2k

ij − πj |

and the mixing time for a ε > 0

τi(ε) := min{k : ∆i(k
′) < ε, ∀ k′ ≥ k}.
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Then, by our assumption, there exist 2K = τi(ε) = O(|V |), thus K = O(log |V |). Intuitively,

for all k ≥ K, each row of the matrix P 2k is approximately equal to π (w.r.t. ε), as a

consequence P 2k1Xi ≈ φ0.

Theorem 3. Let α ∈ (0, 1/2) and (M, dM) be a closed manifold with geodesic dM. The

Wasserstein distance w.r.t. the diffusion ground distance Dα(·, ·) is equivalent to the Wasser-

stein distance w.r.t the snowflake distance dM(·, ·)2α on M, that is WDα 'Wd2α
M
.

Proof. We will prove this for a more general framework, we let two metrics d1(·, ·) and

d2(·, ·) on a sigma-finite measure space Z, and let µ and ν be two measures. We assume

d1 ' d2, that is there exist two constants c, C > 0 such that for all x, y ∈ Z we have

c d1(x, y) ≤ d2(x, y) ≤ C d1(x, y). Using the same notation as in equation 7.1, for all

π ∈ Π(µ, ν) we have

c

∫
Z×Z

d1(x, y)π(dx, dy) ≤
∫
Z×Z

d2(x, y)π(dx, dy) ≤ C

∫
Z×Z

d1(x, y)π(dx, dy)

then

c inf
π∈Π(µ,ν)

∫
Z×Z

d1(x, y)π(dx, dy) ≤ inf
π∈Π(µ,ν)

∫
Z×Z

d2(x, y)π(dx, dy)

≤ C inf
π∈Π(µ,ν)

∫
Z×Z

d1(x, y)π(dx, dy)

which is the same as cWd1(µ, ν) ≤ Wd2(µ, ν) ≤ CWd1(µ, ν), this proves that whenever d1

and d2 are equivalent then Wd1 and Wd2 are equivalent as well.

Corollary 2.1. Let Pε be the continuous equivalent of the stochastic matrix in equation 7.5.

For ε small enough, we have:

Ŵ
P
t/ε
ε
'WDα . (7.13)

Proof. Note that by Theorem 7.4.3 it is equivalent to show that Ŵ
P
t/ε
ε
' ŴHt . First note

that according to [46] we have ‖P t/ε
ε −Ht‖L2(M) → 0 as ε→ 0, note that since Vol(M) <∞

(closed manifold) and according to Cauchy-Schwarz inequality we get ‖P t/ε
ε −Ht‖L1(M) → 0
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as ε → 0. Generally speaking, convergence in L2 implies convergence in L1 when the

manifold is closed. Now put Dε,t = P
t/ε
ε −Ht, then we have ‖Dε,t‖L1(M) → 0 as ε→ 0. Let

µ and ν be two measures and let δ > 0, choose ε > 0 small enough so that ‖Dt,εγ‖1 < δ‖γ‖1

for all t > 0, where γ = µ− ν,

ŴDε,t(µ, ν) = ‖Dε,1γ‖1 +
∑
k≥0

2−kα
∥∥∥(Dε,2−(k+1) −Dε,2−k

)
γ
∥∥∥

1

≤ ‖Dε,1γ‖1 +
∑
k≥0

2−kα
∥∥∥Dε,2−(k+1)γ

∥∥∥
1

+ 2−kα
∥∥Dε,2−kγ

∥∥
1

≤ δ‖γ‖1 + 2 δ ‖γ‖1
∑
k≥0

2−kα

= δ‖γ‖1
(

1 +
2

1− 2−α

)
.

This proves that for all t > 0, for all δ > 0 there exists an ε > 0 sufficiently small such that

ŴDε,t(µ, ν) ≤ δ‖µ− ν‖

Note also that using the reverse triangle inequality we can easily show that

∣∣∣Ŵ
P
t/ε
ε

(µ, ν)− ŴHt(µ, ν)
∣∣∣ ≤ ŴDε,t(µ, ν)

, let δ > 0 then for ε > 0 small enough we get

ŴHt(µ, ν)− δ‖µ− ν‖1 ≤ ŴP
t/ε
ε

(µ, ν) ≤ ŴHt(µ, ν) + δ‖µ− ν‖1,

according to [212] we can get lower bounds of the heat kernel (which implies lower bounds

for the heat operator), we have ŴHt(µ, ν) ≥ ‖H1(µ− ν)‖1 ≥ C‖µ− ν‖1 for some C > 0. If

δ < C/2 then for sufficiently small ε > 0,

1

2
ŴHt(µ, ν) ≤ Ŵ

P
t/ε
ε

(µ, ν) ≤ 3

2
ŴHt(µ, ν)

which completes the proof.
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Corollary 3.1. For each 1 ≤ i, j ≤ m let Xi, Xj ∈ X be two datasets with size ni and nj

respectively, and let µi and µj be the continuous distributions corresponding to the ones of

Xi and Xj , let K be the largest scale and put N = min(K,ni, nj). Then, for sufficiently

big N →∞ (implying sufficiently small ε = 2−K → 0):

Wα,K(Xi, Xj) 'Wd2α
M

(µi, µj), (7.14)

for all α ∈ (0, 1/2).

Proof. First define

Wα,K,ε(Xi, Xj) :=‖µ(1/ε)
i − µ(1/ε)

j ‖1

+
K−1∑
k=0

2−kα‖(µ(2−(k+1)/ε)
i − µ(2−k/ε)

i )− (µ
(2−(k+1)/ε)
j − µ(2−k/ε)

j )‖1, (7.15)

Note that for ε = 2−K we have Wα,K,ε(Xi, Xj) = Wα,K(Xi, Xj). Since ni → ∞ and

nj →∞, then using Monte-Carlo integration we get

lim
ni,nj→∞

Wα,K,ε(Xi, Xj) = Wα,K,ε(µi, µj)

where Wα,K,ε(µi, µj) has the same expression as in equation 7.15 (replacing the discrete

measure µi’s with the continuous measures µi’s),

Wα,K,ε(µi, µj) = ‖P 1/ε
ε µi − P 1/ε

ε µj‖1

+
K−1∑
k=0

2−kα‖(P 2−(k+1)/ε
ε µi − P 2−k/ε

ε µi)− (P 2−(k+1)/ε
ε µj − P 2−k/ε

ε µj)‖1

Note that by definition of Ŵ
P
t/ε
ε

we have limK→∞Wα,K,ε(µi, µj) = Ŵ
P
t/ε
ε

(µi, µj) and

thus

lim
N→∞

Wα,K,ε(Xi, Xj) = Ŵ
P
t/ε
ε

(µi, µj)

Combining this result with Corollary 7.4.4 yields Wα,K,ε(Xi, Xj) 'WDα(µi, µj) for N large

enough and ε small enough. Now if we take ε = 2−K and apply Theorem 7.4.5 we get
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Wα,K(Xi, Xj) 'Wd2α
M

(µi, µj) as required.

7.B Related Work

Wavelet-based linear time approximations of the earth mover’s distance have been investi-

gated by Indyk and Thaper [93] who used randomly shifted multi-scale grids to compute

EMD between images. Shirdhonkar and Jacobs [187] expanded this to wavelets over Rn

showing the benefit of using smooth bins over the data, and the relationship to the dual

problem. Leeb and Coifman [121] investigated using wavelets over more general metric

spaces. We build off of this theory and efficiently approximate this distance on discrete

manifolds represented by sparse kernels.

Another line of work in approximations to the Wasserstein distance instead works with

tree metrics over the data [120, 115, 10, 179]. These tree methods also linear time however

are built in the ambient dimension and do not represent graph distances as well as graph

based methods as shown in Sec. 8.5. Averaging over certain tree families can linked to

approximating the EMD with a Euclidean ground distance in Rn [93]. Many trees may

be necessary to smooth out the effects of binning over a continuous space as is evident

in Figure 7.2. Diffusion EMD uses multiple scales of smooth bins to reduce this effect,

thus giving a smoother distance which is approximately equivalent to a snowflake of the L2

distance on the manifold.

A third line of work considers entropy regularized Wasserstein distances [50, 18, 192].

These methods show that the transportation plan of the regularized 2-Wasserstein distance

is a rescaling of the heat kernel accomplished by the iterative matrix rescaling algorithm

known as the Sinkhorn algorithm. In particular, Solomon et al. [192] links the time param-

eter t in the heat kernel Ht to the entropy regularization parameter and performs Sinkhorn

scaling with Ht. While applying the heat kernel is efficient, to embed m distributions with

the entropy regularized Wasserstein distance is O(m2) as all pairwise distances must be

considered. Next we explore the linear time algorithms based on multiscale smoothing for

compute the earth mover’s distance.
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7.B.1 Multiscale Methods for Earth Mover’s Distance

Let a (possibly randomized) transformation T map distributions on Ω to a set of multiscale

bins b, T : µ(Ω)→ b, these methods define a T such that

Wd(µ, ν) ≈ E‖T (µ)− T (ν)‖1. (7.16)

Where the approximation, the randomness, and the transform depend on the exact imple-

mentation. All of these methods have two things in common, they smooth over multiple

scales

Indyk and Thaper [93] presented one of the early methods of this type. They showed

that by computing averages over a set of randomly placed grids at dyadic scales. These

grids work well for images where the pixels form a discrete set of coordinates.

Shirdhonkar and Jacobs [187] showed how to generalize this work over images to more

general bin types, more specifically they showed how wavelets placed centered on a grid

could replace the averages in Indyk and Thaper [93]. This work linked the earth mover’s

distance in the continuous domain to that of the discrete through wavelets in Rd, showing

that for some wavelets the EMD approximation was better than the previous grid method.

In Diffusion EMD we generalize these wavelets to the graph domain using diffusion wavelets

on the graph allowing Wasserstein distances with a geodesic ground distance.

Kolouri et al. [109] in Sliced Wasserstein distances showed how the Wasserstein distance

could be quickly approximated by taking the Wasserstein distance along many one dimen-

sional slices of the data. This can be thought of binning along one dimension where the

cumulative distribution function is represented along n bins (one for each point) with each

bin encompassing one more point than the last.

Le et al. [115] generalized the Sliced Wasserstein distance back to trees, giving a new

method based on multi-level clustering where the data is partitioned into smaller and smaller

clusters where the bins are the clusters. They demonstrated this method on high dimen-

sional spaces where previous methods that had d2k bins at scale k were inefficiently using

bins. By clustering based on the data, their ClusterTree performs well in high dimensions.

However, by clustering they lose the convergence to the Wasserstein distance with Euclidean
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ground distance of previous methods for efficiency in high dimensions.

Diffusion EMD uses smooth diffusion wavelets over the graph which can give geodesic

distances unlike previous multiscale methods. Furthermore, Diffusion EMD selects a number

of bins that depends on the rank of the data at each dyadic scale, which can lead to smaller

representations depending on the data. This is summarized in Table 7.2, which details these

differences.

Table 7.2: Comparison of Multiscale Methods for Earth Mover’s Distance

Method Scales Bins per scale Data Dependent Centers Smooth Bins Geodesic Distances

Indyk and Thaper [93] Dyadic d2
k

No No No

Shirdhonkar and Jacobs [187] Dyadic d2
k

No Yes No
Kolouri et al. [109] n 1 Yes No No
Le et al. [115] Specified Ck Yes No No
Diffusion EMD Dyadic Rank Dependent Yes Yes Yes

7.C Algorithm Details

In this section we present two algorithms for computing the Diffusion EMD, the Cheby-

shev approximation method and the interpolative decomposition method. The Chebyshev

method is more effective when the number of distributions is relatively small. The inter-

polative decomposition method is more effective when the number of distributions is large

relative to the size of the manifold. We also detail how to subsample the normed space

based on the spectrum of P which can be approximated quickly.

First we define the approximate rank up to precision δ of a matrix A ∈ Rn×n as:

Rδ(A) := # {i : σi(A)/σ0(A) ≥ δ} (7.17)

Where σi(A) is the ith largest singular value of the matrix A. The approximate ranks of

dyadic powers of P 2k are useful for determining the amount of subsampling to do at each

scale either after an application of the Chebyshev method or during the computation of

(approximate) dyadic powers of P . We note that based on the density of singular values

of P , which is quickly computable using the algorithm presented in Dong et al. [56], the

approximate rank of all dyadic powers of P can be calculated without computing powers
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of P .

Chebyshev Approximation of Diffusion EMD We first note that P 2k can be com-

puted spectrally using a filter on its eigenvalues. Let M = D1/2PD−1/2 be the sym-

metric conjugate of P . Then M is symmetric and has eigenvalues lying in the range

−1 ≤ λ0 ≤ λ1 ≤ . . . ≤ λn ≤ 1. M can be decomposed into UΣUT for orthonormal U and

Σ a diagonal matrix of [λ0, λ1, . . . , λn]. We then express P 2k as a filter on the eigenvalues

of the M :

P 2k = D−1/2U(Σ)2kUTD1/2 (7.18)

We compute the first J Chebyshev polynomials of P jµ then use the polynomial filter

on the eigenvalues h(σ) = σ2k to compute diffusions of the distributions, and reweight

these diffusion bins as specified in Algorithm 2. This algorithm requires J sparse matrix

multiplications of P and µ. For a total time complexity of Õ(Jmn) when P is sparse.

Interpolative Decomposition Approximation of Diffusion EMD Our second method

proceeds by directly approximating multiplication by the matrix P 2k . The naive solution

of computing dyadic powers of P on the original basis quickly leads to a dense n×n matrix.

Coifman and Maggioni [47] observed that P 2k is of low rank, and therefore multiplication by

P 2k can be approximated on a smaller basis. In that work they introduced a method of iter-

atively reducing the size of the basis using rank-revealing pivoted sparse QR decomposition,

then computing P 2k+1
= P 2kP 2k . By reducing the size of the basis and orthogonalizing

the basis is kept small and P 2k is kept sparse on its corresponding basis. For sparse P this

gives an algorithm that is O(n log2 n) for computing dyadic powers of a sparse matrix.

Our algorithm follows the same lines as theirs however we use interpolative decompo-

sition to reduce the size of the basis, and do not do so at early stages where the size of

the basis may still be a significant fraction of n. Interpolative decomposition allows for

an easy interpretation: we are selecting a well spaced set of points that acts as a basis for

higher levels of P 2k . For more details on interpolative decomposition we refer the reader to

Liberty et al. [128], Bermanis et al. [23]. The algorithm in Coifman and Maggioni [47] also

computes powers of P 2k in the original basis by projecting the multiplication in the reduced
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basis back to the original. We do not bother computing P 2kµ in the original basis, but

instead use the reduced basis directly to compare distributions against. Denote the basis

at level k as φk, which is really a subset of φk−1, then φk can be thought of as the centers

of the bins at level k of our multiscale embedding. We only compare distributions at these

representative centers rather than at all datapoints. This is summarized in Algorithm 5,

creating an embedding for each distribution whose length is dependent on the rank of P .

Sampling the Diffusions at Larger Scales Interpolative decomposition is an integral

part of Algorithm 5. However, it can also be useful in reducing the size of the distribution

representations of Algorithm 2 which uses the Chebyshev approximation. Without sampling

the Chebyshev algorithm centers a bin at every datapoint at every scale. However, for

larger scales this is unnecessary, and we can take advantage of the low rank of P 2k with

interpolative decomposition. In practice, we use the top 6 largest scales, in fact the distance

shows very little sensitivity to small scales (see Fig. 7.5(d)). In fact, this representation can

be compressed without a significant loss in performance as shown in Fig. 7.5(b,c). We

apply the rank threshold to the spectrum of P 2k , which can be computed from the density

of states algorithm described above, to determine the number and location of centers to

keep. With δ = 10−6 this reduces the number of centers from 60, 000 to < 4, 000 with a

small loss in performance. Rather than selecting a fixed number of centers per scale as in

previous methods, this allows us to vary the number of centers per scale as necessary to

preserve the rank at each scale.

Time Complexity Here, we assume that P has at most Õ(n) = O(n logc n) nonzero

entries. In this case, interpolative decomposition in Algorithm 3 has complexity O(k ·m ·

n log n), and the randomized version in Algorithm 4 has complexity O(km + k2n) [128].

Algorithm 2 has complexity O(Jmn logc n) which is dominated by calculation of the J

powers of P jµ. The computation time of Algorithm 5 is dominated by the first random-

ized interpolative decomposition step. When we set γ = O(logc n), which controls when

the application of RandID occurs, this gives a total time complexity for Algorithm 5 of

Õ(mn) = O(n log2c n + mn logb n), where b and c are constants controlled by γ. As γ in-
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Algorithm 3 Interpolative Decomposition

Input: m× n matrix A and number of subsamples k s.t. k < min{m,n}.
Output: m×k matrix B and k×n matrix C s.t. ‖AP−BC‖2 ≤

√
4k(n− k) + 1σk+1(A),

where B consists of k columns of A.
Perform pivoted QR decomposition on A s.t. AP = QR, where P is a permutation matrix
of A.
Where Q and R are decomposed as the following with Q1 is a m × k matrix, Q2 is
m× (n− k), etc.

Q = [Q1 | Q2]; R =

[
R11 R12

0k×n−k R22

]
B ← Q1R11

C ← [Ik|R−1
11 R12]

Algorithm 4 Randomized Interpolative Decomposition: RandID(A, j, k, l)

Input: m × n matrix A, random sample sizes j, l, and number of subsamples k s.t.
min{m,n} > j > k > l.
Output: m×k matrix B and k×n matrix C s.t. ‖A−BC‖2 ≤

√
4k(n− k) + 1σk+1(A)

w.h.p., where B consists of k columns of A.
G1 ← N (0, 1)j×m

W ← G1A
Perform the (deterministic) interpolative decomposition on W in Algorithm 3 to get B̃, C
s.t. ‖W − B̃D‖2 small.
G2 ← N (0, 1)l×j

W2 ← G2W
B̃2 ← G2B̃
Find the k indices of B̃2 that are approximately equal to columns in W2, [i1, i2, . . . , ik].
b← [b1, b2, . . . , bK ]

creases, b increases and c decreases. The first term is dominated by the first interpolative

decomposition setup, and the second is the calculation of µ(2k). It follows that when m� n,

it is helpful to set γ larger for a better tradeoff of b and c. In practice we set γ = n/10

which seems to offer a reasonable tradeoff between the two steps. For small m in practice

Algorithm 2 is significantly faster than Algorithm 5.

7.C.1 Gradients of the Diffusion EMD

In this section we will develop the computation of the gradient of the Diffusion EMD

Wα,K(Xi, Xj), we will show that its gradient depend only on the gradient of the Gaussian

kernel matrix Kε which is easy to compute. We start by recalling some basic facts about

the gradient of matrices,
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Algorithm 5 Interpolative Decomposition diffusion densities Tid(K,µ,K, α, δ, γ)

Input: n × n graph kernel K, n × m distributions µ, maximum scale K, snowflake
constant α, rank threshold δ, and basis recomputation threshold γ.
Output: Distribution embeddings b
Q← Diag(

∑
iKij)

Knorm ← Q−1KQ−1

D ← Diag(
∑

iK
norm
ij )

M ←D−1/2KnormD−1/2

µ(20) ← Pµ←D−1/2MD1/2µ
µ0 ← µ
n0 ← n
for k = 1 to K do

if Rδ(M
2k) < γ then

Bk,Ck ← RandID(Mk−1, Rδ(M
2k) + 8, Rδ(M

2k), 5)

nk ← Rδ(M
2k)

else
Bk,Ck, nk ← Bk−1, Ink−1

, nk−1

end if
Mk ← CkMk−1M

T
k−1C

T
k

µk ← Ckµk−1

µ(2k) ←D−1/2MkD
1/2µk

bk−1 ← 2(K−k−1)α(µ(2k) −Ckµ(2k−1))
end for
bK ← µ(2K)

b← [b0, b1, . . . , bK ]

1. For a matrix P and a vector µ we have ∇‖Pµ‖1 = sign(Pµ)µT∇P .

2. For an invertible matrix P , the gradient of the inverse of P is∇(P−1) = −P−1∇(P )P−1.

3. Let n ∈ N∗ the gradient of Pn is

∇Pn =

n−1∑
`=0

P `∇(P )Pn−`−1.
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Using the definition of the Diffusion EMD, we have

∇Wα,K(Xi, Xj) =∇‖P 2K

ε (µj − µi)‖1 +
K−1∑
k=0

2−(K−k−1)α∇‖
(
P 2k+1

ε − P 2k

ε

)
(µj − µi)‖1

=sign
(
P 2K

ε (µj − µi)
)

(µj − µi)T∇(P 2K

ε ) +
K−1∑
k=0

2−(K−k−1)α

sign
(
P 2k+1

ε − P 2k

ε

)
(µj − µi))T∇(P 2k+1

ε − P 2k

ε ).

The last formula tells us that the gradient of Wα,K(Xi, Xj) depends only on the gradient

of the powers of Pε which in turn can be expressed in terms of the gradients Pε. We have:

∇Pε = ∇(D−1
ε MεD

−1
ε )

= ∇(D−1
ε )Mε +D−1

ε ∇(Mε)

= −D−1
ε ∇(Dε)D

−1
ε Mε +D−1

ε ∇(Mε)

= −D−1
ε ∇(diag(Mε1))D−1

ε Mε +D−1
ε ∇(Mε)

= −D−1
ε diag(∇(Mε)1)D−1

ε Mε +D−1
ε ∇(Mε),

therefore in order to compute ∇Pε we need to compute ∇Mε,

∇Mε = ∇(Q−1
ε KεQ

−1
ε )

= ∇(Q−1
ε )KεQ

−1
ε +Q−1

ε ∇(Kε)Q
−1
ε +Q−1

ε Kε∇(Q−1
ε )

= −Q−1
ε ∇(Qε)Q

−1
ε KεQ

−1
ε +Q−1

ε ∇(Kε)Q
−1
ε −Q−1

ε KεQ
−1
ε ∇(Qε)Q

−1
ε

= −Q−1
ε ∇(diag(Kε1))Q−1

ε KεQ
−1
ε +Q−1

ε ∇(Kε)Q
−1
ε −Q−1

ε KεQ
−1
ε ∇(diag(Kε1))Q−1

ε

= −Q−1
ε diag(∇(Kε)1)Q−1

ε KεQ
−1
ε +Q−1

ε ∇(Kε)Q
−1
ε −Q−1

ε KεQ
−1
ε diag(∇(Kε)1)Q−1

ε

hence the gradient of Mε can be written only in terms of the gradient of Kε. This process

shows that the gradient of the EMD diffusion can be expressed in terms of the gradient of the

Gaussian kernel only, which may make it useful in future applications where fast gradients
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of the earth mover’s distance are necessary. For example, in distribution matching where

previous methods use gradients with respect to the Sinkhorn algorithm [69], which scales

with O(n2). In this application, computation of gradients of Diffusion EMD would be O(n).

What makes this possible is a smooth kernel and smooth density bins over the graph. In

contrast to Diffusion EMD, multiscale methods that use non-smooth bins have non-smooth

gradients with respect to Kε, and so are not useful for gradient descent type algorithms.

We leave further investigation into the gradients of Diffusion EMD to future work.

7.D Experiment Details

We ran all experiments on a 36 core Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz with

512GB of RAM. We note that our method is extremely parallelizable, consisting of only

matrix operations, thus a GPU implementation could potentially speed up computation.

For fair comparison we stick to CPU implementations and leave GPU acceleration to future

work. We provide custom implementations of all methods in the DiffusionEMD package,

which is available on Github. We base our Sinkhorn implementation on that in the python

optimal transport package (POT) [68], and our tree methods off of the sklearn nearest

neighbors trees [159].

7.D.1 Metrics used

P@10. P@10 is a metric that measures the overlap in the 10-nearest neighbors between

the nearest neighbors of the EMD method and the ground truth nearest neighbors, which is

calculated using exact OT on the geodesic ground distance. P@10 is useful for distinguishing

the quality of distance calculations locally, whereas the next metric measures the quality

more globally. This may be particularly important in applications where only the quality of

nearest neighbors matters as in Sect 7.4.6, or in applications of Wasserstein nearest neighbor

classification [93, 10].

Spearman-ρ. The Spearman’s rank correlation coefficient (also known as Spearman-ρ)

measures the similarity in the order of two rankings. This is useful in our application
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because while the 1-Wasserstein and 2-Wasserstein may have large distortion as metrics,

they will have a high Spearman-ρ in all cases. Spearman-ρ is defined for two rankings of

the data where di is the difference in the rankings of each for each datapoint i as

ρ = 1− 6
∑
d2
i

n(n2 − 1)

This is useful for quantifying the global ranking of distributions in the graph, which shows

the more global behavior of EMD methods. Since locally manifolds with low curvature

look very similar to Rd, where d is the intrinsic dimension of the manifold, for distributions

very close together on the manifold using a Euclidean ground distance may be acceptable,

however for distributions far away from each other according to a geodesic ground distance,

approximation with a Euclidean ground distance may perform poorly.

7.D.2 Line Example

In Fig 7.2 we used a cluster tree with 4 levels of 4 clusters for the cluster tree, and a quad tree

of depth 4. These are mostly for illustrative purposes so we there was no parameter search

for ClusterTree or QuadTree. As the number of trees gets larger ClusterTree and QuadTree

start to converge to some smooth solution. ClusterTree has a number of bumps caused by

the number of clusters parameter that do not disappear even with many trees. Quadtree

converges to a smooth solution as the number of trees gets large in this low dimensional

example.

7.D.3 Swiss Roll

On the swiss roll example we compared Diffusion EMD to ClusterTree, QuadTree, and the

convolutional Sinkhorn method. Here we describe the parameter setup in each of these

methods for Figure 7.3, 7.4, and 7.5.

For Fig. 7.3 we chose parameters that approximately matched the amount of time be-

tween methods on this dataset to the Diffusion EMD with default settings using the Cheby-

shev algorithm. This was 150 cluster trees of depth 8 with 3 cluster, and 20 quad trees of

depth 4. We noticed that the speed of quadtree diminishes exponentially with dimension.
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For Fig. 7.4 we did a grid search over parameters for QuadTree and Cluster Tree to

find the best performing settings of depth and number of clusters. We searched over depth

d ∈ [2 . . . 10] and number of clusters C ∈ [2 . . . 5] for ClusterTree. We found a depth of 4 for

QuadTree and 3 Clusters of depth 5 for ClusterTree gave the best tradeoff of performance

vs. time on this task. These parameters were tried while fixing the number of trees to 10.

We fixed this depth and number of clusters for subsequent experiments varying the number

of trees in the range [1 . . . 100] for QuadTree and in the range [1 . . . 15] for ClusterTree. The

maximum of this range exceeded the time allotment of Diffusion EMD in both cases. For the

convolutional Sinkhorn method we fixed parameter t = 50 for Ht, and fixed the maximum

number of iterations in the range [1 . . . 100]. This took orders of magnitude longer than

the multiscale methods in all cases, with comparable performance to Diffusion EMD on the

P@10 metric and better performance using the Spearman-ρ metric. We note that a similar

multi-step refinement scheme as implemented in Backurs et al. [10] could be used here.

7.D.4 MNIST

To construct the Spherical MNIST dataset [45], we projected the 70,000 images in classical

MNIST onto a spherical graph containing 25,088 nodes. Every pixel in each MNIST image

was projected onto four nodes on the northern hemisphere. These projections were treated

as signals over a spherical graph.

We ran Diffusion EMD, ClusterTree, and QuadTree on this dataset to generate em-

beddings in L1 space. Diffusion EMD was run with the diffusion wavelet approximations

described in the paper, using an epsilon value of 0.001. To best compare accuracy, we

chose parameters for QuadTree and ClusterTree that approximately matched the runtime

of Diffusion EMD. For QuadTree, we used a depth of 20 and 10 clusters. For ClusterTree,

we used a depth of 5. However, we note that both ClusterTree and QuadTree experienced a

variance of 10-30 minutes between subsequent runtimes with the same parameters, probably

due to differences of random initialization. We did not run Convolutional Sinkhorn on this

dataset, as the projected runtime exceeded 24 hours.

We calculated a ground truth EMD between 100 of the projected MNIST digits using

the exact EMD implementation of Python Optimal Transport. More accurate comparisons
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might be obtained using more points, but computation of this 100 by 100 distance matrix

took over 24 hours, necessitating severe subsampling, and once again highlighting the need

for fast and accurate approximations of EMD.

For each algorithm, we obtained an accuracy score by running a kNN classifier on the

embeddings using an even train/test split considering only the nearest neighbors. We then

computed the Spearman ρ and P@10 score between each method and the exact EMD ground

truth.

7.D.5 Single-cell COVID-19 Dataset

One hundred sixty eight patients with moderate to severe COVID-19 [140] were admitted to

YNHH and recruited to the Yale Implementing Medical and Public Health Action Against

Coronavirus CT (IMPACT) study. From each patient, blood samples were collected to

characterize patient cellular responses across timepoints to capture the spectrum of disease.

In total, the composition of peripheral blood mononuclear cell (PBMC) was measured by

a myeloid-centric flow cytometry on 210 samples. Finally, clinical data was extracted from

the electronic health record corresponding to each biosample timepoint to allow for clinical

correlation of findings as shown previously. In the main analysis, poor or adverse outcomes

were defined by patient death, while good outcomes were defined by patient survived. In

order to analyze the 22 million cells generated in this study, we performed k-means cluster-

ing, setting k to 27,000, and took the resultant cluster centroids as a summarization of the

cellular state space as done previously in [111].

To test the quality of the organization of patients using EMD methods, we test the

Laplacian smoothness on the 10-nearest neighbors graph created for each method. The

Laplacian smoothness of a function on the nodes is denoted fTLf where L = D−A is the

(combinatorial) Laplacian of the adjacency matrix A. This is equivalent to computing the

following sum: ∑
(i,j)∈E

(fi − fj)2

where E is the edge set of the kNN graph. This measures the sum of squared differences of

f along the edges of the kNN graph, which measures the smoothness of f over the graph.
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Various cell types have been shown to be associated with mortality from COVID-19

infection, including CD16+ Neutrophils, T cells and non-classical monocytes. Previously,

T cells-to-CD16+ Neutrophils ratios have been reported to be predict of outcome, with

low ratios predicting mortality and high ratios predicting survival [124]. Even outside of

ratios, the absolute counts to T cells [43] and CD16+ Neutrophils [141] have been shown to

be associated with mortality. Finally, non-classical monocytes have also been shown to be

enriched in patients with more severe outcomes [161], further supporting our findings.
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Chapter 8

Unbalanced Transport on Graphs

and Geometric Domains

8.1 Introduction

The task of comparing probability distributions is applicable to a wide variety of machine

learning problems, giving rise to popular φ-divergences such as the Kullback-Leibler (KL),

Hellinger, or total variation divergences, which all compare the ratio between probability

density functions of the two distributions, while ignoring the underlying geometry of their

support (or on which they are defined). The Earth Mover’s Distance (EMD), also known as

the Monge-Kantorovich or Wasserstein Distance, explicitly takes into account this under-

lying geometry via a domain-specific ground distance, which yields many advantages when

processing empirical probability distributions [165, 10]. Here, we show that earth mover’s

distances are useful in a new domain: that of graph signals. In modern relational machine

learning, we encounter large graphs that arise via interactions between entities in many do-

mains [24, 184]. Features of such entities can be considered as signals on the graph. In many

cases, entities can also be modeled directly as signals on existing graphs between connected

concepts or observations. For such signals, which often tend to be noisy, we propose a new

unbalanced graph earth mover’s distance, and use it to organize the signals and determine

relationships between them.
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Since modern knowledge graphs can contain tens (Cora) [24] to hundreds (SNOMED-

CT) [184] of thousands of nodes, there is a great need for this measure to be highly com-

putationally efficient. However, while the Wasserstein Distance is intuitively attractive, it

presents computational challenges and has only become feasible for large problems with

approximation, which is the focus of this work. First, based on the recent diffusion EMD

method [200], we show that an efficient unbalanced EMD between signals can be computed

as the difference between graph convolutions of the signal with multiscale graph kernels

— which can be computed in linear time with convergence guarantees without solving an

optimization problem. We call our distance unbalanced diffusion earth mover’s distance

(UDEMD).

While previous work on Wasserstein distance embedding mostly focused on its relation

to the balanced optimal transport problem [93, 187, 75, 115, 200], we propose an unbalanced

Wasserstein embedding approach between large number of distributions defined as signals

on graphs. Since signals and particularly graph signals tend to be noisy, an unbalanced

transport, which can choose not to transport parts of the data space when it is inefficient

to do so, leads to more robust distances between graph distributions that are less sensitive

to outliers in the signal.

We apply our unbalanced diffusion EMD to medical knowledge graphs using Systemized

Nomenclature of Medicine - Clinical Terms (SNOMED-CT) [184]. Here, we take patient

records obtained from the Medical Information Mart for Intensive Care version III (MIMIC-

III), a database containing information for patients who were admitted to the hospital at a

tertiary academic medical center in Boston, MA, USA and required intensive care unit level

of care [98], and extract concepts from discharge summaries (notes written by physicians

to summarize a patient’s hospital stay) via MetaMap, a tool for discovering concepts in

biomedical text [9]. We then model the patient (collection of concepts extracted from

the discharge summary) as a signal on the SNOMED-CT knowledge graph. We show

that unbalanced diffusion EMD can be used to find meaningful distances between patients

such that a patient-kernel can be created which successfully clusters patients into different

categories, and allows us to find relationships between patient features.

We also show application of this approach to single cell RNA-sequencing data where
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we can model both cells as signals on gene interaction graphs or genes as signals on cell-

similarity graphs. In cases where the gene regulatory network is well known, researchers

[92, 15] have shown that affinity between cells can be computed as an earth mover’s distance.

We show that UDEMD runs orders of magnitude faster than the Sinkhorn method, and

network simplex methods used in those works, while maintaining accuracy. On the other

hand, in cases where the gene regulatory network is not well known, we can derive groupings

of genes that function similarly by modeling genes as expression values over single cells. This

type of signal is notoriously noisy as it is afflicted by dropout [167] (i.e., the measurement

technology effectively captures 10 percent of the transcriptome). Here we show that the

UDEMD provides robust distances that recapitulate ground truth gene groupings in single

cell data from peripheral blood mononuclear cells (PBMCs).

The remainder of the paper is structured as follows. In section 8.2 we review graph signal

processing, the Wasserstein metric and the unbalanced Wasserstein metric. In section 8.3,

we formulate the problem of embedding a robust earth mover’s distance over a graph into

L1. In section 8.4 we formulate the embedding of the unbalanced diffusion earth mover’s

distance both theoretically and algorithmically, and in section 8.5 we empirically establish

the efficiency, accuracy, and robustness of UDEMD.

8.2 Preliminaries

In this section we review graph signal processing, the Wasserstein metric and embedding

based methods for approximating it, and unbalanced optimal transport.

Notation We say that two items A and B are equivalent if there exist c, C > 0 such that

cA ≤ B ≤ CA, and we denote A ' B. When two metrics are equivalent, this is also known

as topological equivalence.

Graph Signal Processing We consider a graph G = (V,E) equipped with a family of

graph signals F = {fi : V → R; i ∈ 1, . . .m}. In this work we will show how to build

a kernel over this family of functions that measures the similarity between signals on the

graph. One way to do this would be to measure the sum of squared edge weights of the two
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signals known as Tikhonov regularization i.e.

∑
eab∈E

((fi − fj)(a)− (fi − fj)(b))2 (8.1)

or with an L1 norm, known as graph total variation [220]. However, these two functions

only penalize local differences in the signals, ignoring differences outside of the immediate

neighborhood of each node. Here, we perform unbalanced transport that takes into account

larger scales and has an intuitive interpretation as n→∞, namely that of the Wasserstein

metric over the geodesic metric.

The Wasserstein Metric The Wasserstein metric is a notion of distance between two

measures µ, ν on a measurable space Ω endowed with a metric d(·, ·), which is referred as

the ground distance. The primal formulation of the p-Wasserstein distance Wd, also known

as the earth mover’s distance (EMD), is defined as:

W p
d (µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
Ω×Ω

d(x, y)pπ(dx, dy)

)1/p

, (8.2)

where Π(µ, ν) is the set of joint probability distributions π on the space Ω × Ω, such that

for any subset ω ⊂ Ω, π(ω × Ω) = µ(ω) and π(Ω × ω) = ν(ω). Also of interest is the

entropy regularized Wasserstein distance [50], which reduces the computation to O(n2).

This algorithm is extremely parallelizable, and works quite well even for a small number of

iterations [10], and there are many works investigating how to scale this to larger problems.

However, when comparing a large number of signals, we must solve the optimization for

each pair of signals, i.e. O(m2) optimizations. For this reason we turn to methods that

approximate the dual of the Wasserstein metric.

For p ≤ 1, for any metric d, dp is still a metric and for separable Ω, the Kantorovich-

Rubinstein dual holds:

W p
d (µ, ν) = sup

f :|f(x)−f(y)|≤d(x,y)p

∫
Ω
f(x)µ(dx)−

∫
Ω
f(y)ν(dy). (8.3)

Here, f is commonly known as the witness function, particularly in the context of integral
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probability measures, as it “witnesses” the differences between µ and ν over Ω. Since it is in

general difficult to optimize over the entire space of p-Hölder functions, many works optimize

the cost over a modified family of functions such as functions parameterized by neural

networks [8, 84, 199], functions defined over trees [93, 115], and wavelet bases [187, 75].

Unbalanced Optimal Transport There are numerous formulations of unbalanced opti-

mal transport both to accommodate problems with unequal masses and to provide robust-

ness to outlier points [165, 11]. In general these can be formulated as a mixture between a

pure optimal transport problem and a φ-divergence:

UWα(µ, ν) = inf
µ′,ν′

{
Wα(µ′, ν ′) + λµDφ(µ||µ′) + λνDφ(ν||ν ′)

}
. (8.4)

Where λµ, λν control the relative cost of mass creation / destruction compared to trans-

portation, and Dφ is a φ-divergence, also known as an f -divergence or a Csiszár divergence,

which is any divergence that can be formulated as Dφ(P ||Q) =
∫

Ω φ
(
dP
dq

)
dQ, for some con-

vex φ such that φ(1) = 0. Common choices of φ are φ(x) := x log x for the KL divergence

or φ(x) := 1
2 |x − 1| for the total variation distance. In the optimal transport literature,

most often considered is the KL-divergence formulation which can be solved efficiently in

the case of entropic regularized problem as shown in [44, 129], but cannot be optimized

stochastically as is possible in the balanced case, limiting scalability [77, 66]. In the exact

case, the TV-unbalanced problem can be solved by adding a “dummy point” that is con-

nected to every point with equal cost [32, 160]. However, adding a dummy point removes

the metric structure necessary for dual-based Wasserstein distances. Recently [150] showed

that the TV-unbalanced problem can be solved through cost truncation, which is the vari-

ant of unbalanced transport considered in this work. We note that for this case, the total

variation unbalanced Wasserstein distance can be simplified with λ = min{λµ, λν} as

TV-UWα(µ, ν) = inf
s
{Wα(µ+ s, ν) + λTV(µ+ s, µ)} . (8.5)

This simplification is possible as the total variation is symmetric. Intuitively, we can think

of equation 8.5 as minimizing over the “teleporting” mass s, that is too costly to transport.
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It is not immediately obvious that this is efficiently computable. We will show, however,

that there is an embedding of distributions to vectors where the the L1 distance between

vectors is equivalent to the TV-UW between the distributions.

8.3 Problem Setup

We consider a graph G = (V,E) equipped with a family of graph signals F = {fi : V →

R; i ∈ 1, . . .m}. Denote the (sparse) graph adjacency matrix A. Then the associated (lazy)

Markov kernel P is defined as P := 1/2(D−1A + I) where I is the identity matrix, and

D is the degree matrix of A. We will assume |E| > |V | which is true for all connected

graphs and refer to n = |V | and m = |F|. In this work we will show how to build a kernel

over this family of functions that measures the similarity between signals over the graph

at various scales, that can then be used to derive a robust earth mover’s distance between

these signals.

We will start with a few desirable properties of this earth mover’s distance function: 1)

satisfies the properties of a distance, 2) robustness to noise in terms of small perturbations

of values over graph nodes, 3) efficiency and scalability for large graphs that arise in modern

machine learning contexts.

A naive method for comparing signals on graphs is to simply take an Lp pointwise

difference between graph signals. Another method known as graph total variation [220]

takes into account essentially one step of smoothing via the graph adjacency matrix and

then takes an L1 distance. However, this method would not be sensitive to perturbations of

graph signals, either in terms of 1) additive noise, 2) outlier components of the signal. As

shown in Figure 8.1a, additive noise can interfere with pointwise distance metrics. Thus we

turn to a diffusion-based formulation of EMD from [200] which effectively smooths signals

before comparison.

Smoothing the signal f on the graph via a Markov graph kernel P , i.e., f ′ = P tf

would yield a less noisy signal due to local vertex averaging or equivalently, spectral low

pass filtering. However, how much to smooth this signal is unclear. To resolve this we turn

to the recently proposed Diffusion EMD [200], which uses multi-scale heat kernels and is
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defined as follows:

Definition 8.3.1. Diffusion EMD The Diffusion Earth Mover’s Distance between two sig-

nals µ, ν as

DEMDα(µ, ν) :=
∑
v∈V

O(log |V |)∑
k=0

‖gα,k(µ(v))− gα,k(ν(v))‖1 (8.6)

where 0 < α < 1/2 is a meta-parameter used to balance long- and short-range distances,

which in practice is set close to 1/2, and

gα,k(µ(v)) := 2−(K−k−1)α
(
µ(k+1) − µ(k)

)
(8.7)

Where µ(t) is short for µ(t)(v) = (P 2tµ)(v)

Intuitively, we can think about this as looking at the L1 differences of the signals at

multiple scales, where a scale represents an amount of blur, or low-pass filtering of the

signal. Distances of this type have been explored in the setting of continuous manifolds in

[121] drawing on work on generalized heat kernels on manifolds [82].

A second type of noise that may occur in real signals could be outliers as shown in

Fig. 8.1, while smoothing can diminish the magnitude of outliers, they can add a lot of

spurious cost to EMD measures as they require transport (see blue arrow in Fig. 8.1). We

turn to the unbalanced transport explained in the next section to create robustness to such

outliers.

8.4 Unbalanced Diffusion Earth Mover’s Distance

While diffusion EMD presented in [200] can provide an earth mover’s distance between

graph signals, its formulation is not motivated by considering noisy signals on graphs, but

rather geared to avoid high dimensional density estimation by considering intrinsic geometry

defined via sparse affinity matrices constructed over input data. Here, we focus on utilizing

EMD to organize graph signals. Therefore, we are interested in distances that are immune

to outlier spikes in the signals. While the multiscale smoothing proposed in [200] is effective
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in handling noisy perturbation of the signals, it is less effective at dealing with outlier vertex

components of the signal. However, as we show here, the construction can be adapted to

consider unbalanced transport, which is essentially based on the idea that a more faithful

earth mover’s distance is given by an optimal transport in which we ignore some of the mass

– particularly, mass that requires large transport costs. To incorporate this idea in the dual

formulation used in Def. 8.3.1, we decouple the scale selection (i.e., k = 1, . . . , log n) from

the size of the graph, an instead set it to ignore larger scales, which are also more difficult

to compute. This yields the Unbalanced Diffusion EMD (UDEMD) defined below, which is

topologically equivalent to the total variation unbalanced Wasserstein distance.

Definition 8.4.1. Unbalanced Diffusion EMD The Unbalanced Diffusion Earth Mover’s

Distance (UDEMD) between two signals µ, ν as

UDEMDα,K(µ, ν) :=
∑
v∈V

K∑
k=0

‖gα,k(µ(v))− gα,k(ν(v))‖1 (8.8)

where α and gα,k are defined as in Def. 8.3.1, K is the maximum scale considered, which

relates to the unbalancing threshold (see Fig. 8.2 and discussion below in Sec. 8.4.1).

Figure 8.1: (a) Illustrates effect of smoothing component of UDEMD on noise. (b) Illustrates
balanced and unbalanced transport maps.

8.4.1 Equivalence to (Unbalanced) Wasserstein Distance

In [150], it was shown that truncated-cost optimal transport distances were equivalent to

unbalanced Wasserstein distances, and that they are useful in outlier detection. However,

in [150] the proposed implementation was done via truncated the Sinkhorn-OT. Here we

show a similar result for the Unbalanced Diffusion EMD from Def. 8.4.1, i.e., showing that
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with scale truncation it is equivalent an unbalanced Wasserstein distance. We first adapt

Theorem 3.1 from [150] in the following Lemma 8.4.1, which will in turn be combined with

Lemma 8.4.2 to yield this result.

Lemma 8.4.1. The Wasserstein distance with a truncated ground distance dλ(x, y) =

min{λ, d(x, y)} for some constant λ and distance d is equivalent to a total variation un-

balanced Wasserstein distance for some constant λ, i.e.,

Wdλ(µ, ν) = inf
s
{Wd(µ+ s, ν) + λTV (µ+ s, µ)} . (8.9)

Intuitively, any mass transported here (captured by s) at the truncated cost level λ, can

be equivalently seen as being destroyed at the input point for cost λ/2 and created at the

target point λ/2 for a total cost of λ.

The theory developed in [200] assumed that the support of the considered distributions

was a closed Riemannian manifold. In such a case, DEMDα(µ, ν) from Def. 8.3.1 will con-

verge to a distance that is equivalent to the Wasserstein distance defined with the geodesic

distance on the manifold. This theory referenced work from [121] that showed the conver-

gence of a similar multiscale distance on continuous Riemannian manifolds. The following

lemma extends this theory (together with results from [121]) to show that, more generally,

UDEMD from Def. 8.4.1 will converge to a Wasserstein distance where the ground distance

is a thresholded geodesic.

Lemma 8.4.2. UDEMDα,K(µ, ν) is equivalent to a Wasserstein distance Wdλ(µ, ν), defined

as in Lemma 8.4.1, with the ground distance being a truncated geodesic distance on the

manifold, i.e., dλ(x, y) = min{λ, ρ(x, y)} for λ > 0.

Proof. We present a proof sketch here and leave the full proof to the supplement, the main

part of the proof follows the same lines as in Corollary 3.1 of [200]. In equation 8.6, an

anisotropic kernel P is used, which can be shown to converge to the Heat kernel on a

Riemannian manifold (see [47], Prop.3). In [121], it is shown that the construction of equa-

tion 8.6 using the Heat Kernel will converge to a metric that is equivalent to the Wasserstein

with ground distance min{1, ρ(x, y)2α}, where ρ is the geodesic on the manifold. Because
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the metrics min{1, ρ(x, y)2α} and min{λ, ρ(x, y)2α} are equivalent (under the equivalence

notion in [200]) for λ > 0, the Wasserstein distances induced by these metrics are also

equivalent.

By combining together Lemmas 8.4.1 and 8.4.2, we have that the UDEMD metric from

Def. 8.4.1 is equivalent to an unbalanced optimal transport metric. Formally, using the

equivalence notation from [200], we have

UDEMDα,K(µ, ν) ' inf
s
{Wρ(µ+ s, ν) + λTV (µ+ s, µ)} (8.10)

We note that while our result here establishes a relation between these two metrics, it does

not directly quantify the relation between the λ and K. We leave careful theoretical and

rigorous study of this relation to future work1, but mention here that we observe empirically,

as shown in Fig. 8.2, the choice of K indeed acts in a similar way to the threshold λ on the

ground distance. For more discussion of this relation, we refer to the supplement.

(a) Thresholded geodesic (b) UDEMD between diracs

Figure 8.2: On a ring graph n = 500 compares the UDEMD to the thresholded ground
distance, this suggests that UDEMD closely approximates the thresholded ground distance
with λ ≈ 2K .

8.4.2 An Efficient UDEMD Algorithm

To compute the UDEMD defined in Def. 8.4.1, we present Algorithm 6 with time complexity

O(2Km|E|), which is similar to algorithms used in graph neural networks.

Our algorithm scales well with the size of the graph, the number of distributions m

and number of points n, but poorly with the maximum scale K. However, we note that

1. We deem the required nuanced treatment of scaling constants in equivalence bounds out of scope here
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Algorithm 6 Unbalanced diffusion EMD embedding UDEMD(A,µ,K, α)→ b

Input: n×n graph adjacencyA, n×m distributions µ, maximum scale K, and snowflake
constant α.
Output: m× (K + 1)n distribution embeddings b
P = D−1A
µ(20) ← µ
for k = 1 to K do
µ(2k) ← P 2kµ(2k−1)

bk−1 ← 2(K−k−1)α(µ(2k) − µ(2k−1))
end for
bK ← µ(2K)

b← [b0, b1, . . . , bK ]
b̃← Subselect(b)

already in Def. 8.3.1, originating from [200], the maximum scale considered for DEMD was

of order O(log |V |), derived from the convergence of the heat kernel to its steady state (i.e.,

given by ψ0 ' P 2K for K = O(log |V |)). Such scale would still require O(n) matrix-vector

products, or O(log n) dense matrix multiplications. Here, on the other hand, we decouple

the tuning of K and find much smaller maximum scales suffice, and in fact (as discussed

in Sec. 8.4.1) correspond to a well characterized unbalanced earth mover’s distance on the

underlying geometry of the graph. This leads to our algorithm here (unlike the one in [200])

emphasizing preferable scaling properties for small K, while enabling implementation on

GPU.

In practice, the bottleneck for computation of the UDEMD between many distributions

is not computing the embeddings but comparing embeddings. Previous work has made

use of locality sensitive hashing [93], subsampling of significant elements [187], random

sampling [115], and interpolative decomposition [200] to speed up nearest neighbor search

in Wasserstein space [10]. While all of these methods are compatible with UDEMD, we

stick to random sampling over the nodes for simplicity.

8.5 Results

In this section, we show that UDEMD is an efficient and robust method for measuring

distances between graph signals and then using the distances to find embeddings and orga-

nization of the signals (often entities such as patients).
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Experimental setup We compare UDEMD to a GPU implementation of numerically

stabilized Sinkhorn optimization that includes minibatching of sets of distributions. How-

ever, despite this, this method runs out of memory when there are beyond 10,000 nodes in

the graph. We note that all of these methods of this type require solving m2 optimizations,

even when looking for nearest neighbors. For discussion of other methods of this type and

implementation details we refer to the supplement. Unless otherwise noted, we set K = 4

and α = 0.5.

Spherical data test case To test the speed and robustness of UDEMD we present

a dataset where we have knowledge of the intrinsic ground distances and where we can

vary the number of points and distributions. For this dataset we sample m Gaussian-

like functions uniformly distributed on the unit sphere with 10 points each for a total of

n = 10m points (See supplement for more details). We add a random noise spike at a

random location on the sphere to check robustness to this type of noise. The goal is to

predict the neighboring distributions on the sphere. We find that UDEMD is significantly

more scalable and find that there is a sweet spot in terms of K at K = 4 for this dataset.

The UDEMD with K = 4 performs significantly better than the balanced DEMD case with

this type of noise. This supports the claim that setting K � O(log n) is beneficial in real

world datasets. UDEMD also outperforms the graph-TV distance as it is both faster and

more accurate at K = 1, and more accurate overall.

Figure 8.3: UDEMD is more scalable than Sinkhorn-OT and performs better than graph
total variation. (left) Shows performance as measured by P@100, the fraction of the 100
nearest neighbors predicted correctly, against problem size. (middle) Shows time against
problem size, and (right) shows performance vs. time on a problem size of n = 2000 for
different choices of K. We find a good tradeoff at K = 4.
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Single-cell data with cells as signals over gene graphs We consider 206 cells from

the K562 human lymphoblast cell line as signals over a known 10000-node gene graph in

single-cell RNA seq data [132]. We measure the distance between cells based on their

transport on this gene graph. This was recently independently proposed by [92] and [15],

who showed that OT over the gene graph can provide better distances between cells than

Euclidean measures. We measure the performance of these methods based on how well

the resulting distance matrix between cells matches the clusters according to four scores:

Silhouette score, the adjusted Rand index, the normalized mutual information, and the

adjusted mutual information. In Fig. 8.4, we see that UDEMD performs almost as well as

Sinkhorn-OT, and much better than the Euclidean and total variation distances that do not

take into account the gene graph as well as much faster than Sinkhorn-OT, scaling almost

as well as Euclidean distances due to the embedding. Note however, that using balanced

transport (see 8.4b right) degrades the accuracy. The balanced transport compared here is

the original diffusion EMD from [200] which is not a thresholded distance, and thus noise

in the data are able to perturb the accuracy of the distances. For more examples of the

interplay between scale and sensitivity to outliers see supplement.

(a) Performance metrics (b) Computation time comparison

Figure 8.4: UDEMD achieves better clustering than Euclidean and total variation (TV)
distances, and performs similarly well to Sinkhorn-OT but is much more scalable with
similar scalability to Euclidean and TV distances. (a) performance in terms of Silhouette
score, adjusted rand index (ARI), normalized mutual information (NMI), and adjusted
mutual information (AMI).

Single-cell data with genes as signals over cell graphs Next we applied our approach

to 4,360 peripheral blood mononuclear cells (PBMCs) measured via single cell RNAseq

publicly available on the 10X platform. We consider 3 curated gene sets that are explanatory
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for this dataset. We compare the distances between genes using UDEMD, Euclidean, total

variation and Sinkhorn-OT distances. We can see that the genes canonical for monocytes

(orange), T cells (green) and B cells (blue) all appear to be closely positioned to one another

and separate between the groups in our embedding in contrast to a Euclidean distance

embedding of the genes where the clusters are less clear (Figure 8.5a). Visualizing the

UDEMD distance between our 46 genes in a heatmap, we can identify the three clusters

as dark blocks of low distance (Figure 8.5b). This is quantified in (Figure 8.5c), where

UDEMD performs the best on 3/4 metrics. Last, we tried to see how diffusion time scale

impacted silhouette score, identifying that score maximized at a timescale of K = 10 and

did not improve with higher scales.

Figure 8.5: (a) Visualization of gene graphs of 46 genes canonical for different cell types
using UDEMD and Euclidean ground distances (blue for B cells, orange for monocytes and
green for T cells), (b) heat map of gene distances (c) clustering performance (d) silhouette
score vs. maximum diffusion scale K.

A patient concept knowledge graph We consider a knowledge graph constructed

from medical concepts captured in clinical documentation and reporting. SNOMED-CT

is a widely used collection of terms and concepts with defined relationships considered

to be an international standard for medical concepts captured from the electronic health

record. We used 52,150 discharge summaries from MIMIC-III, which contain all information

about a patient’s hospital course. The SNOMED-CT concepts were extracted using a

tool called MetaMap [9], which is a program developed and administered by the National

Library of Medicine designed to extract relevant medical concepts out of biomedical text.

Each patient encounter was linked to a single discharge summary, and after processing was

168



Figure 8.6: Embeddings of patients modeled as signals over the Snomed-CT graph using
TV distance (a top) and using UDEMD distance (a bottom), colored by patient diagno-
sis. UDEMD better organizes the space as noted by selected terms in (b-c), difference of
confusion matrices in (d) and k-nearest neighbors classification accuracy on the diagnosis
in (e). In (b) note that the TV embedding (top) creates a spurious separation (due to
noise in the signal) between subsets of patients who display intracranial bleeding that is not
distinguished by diagnosis. On the other hand the UDEMD embedding (bottom) shows a
continuum of patients with this diagnosis. The same holds for patients with brain mass
or tumor shown in green. (c) UDEMD embedding organizes patients with acute coronary
syndrome as a continuous trajectory with patients who are discharged (with milder cases)
towards the bottom and more severe cases towards the top. The TV embedding again splits
this trajectory.

represented by a vector of medical concepts. These medical concepts were then used as

signals on the SNOMED-CT knowledge graph, which link all relevant concepts together.

The metadata used to label patients included primary diagnosis, which was stored in the

MIMIC-III database, and the discharge status after the conclusion of the hospital stay.

One of the advantages of the UDEMD-based embedding is the identification of clinically

meaningful overlaps that may not be apparent from the single primary diagnosis recorded

in the database. Patients with a primary diagnosis of intracranial bleeding (bleeding in the

brain) can also have primary brain masses and tumors. Compared to the spurious fragmen-

tation of patients with the same diagnosis of intracranial bleeding into several clusters in

the TV embedding, UDEMD consolidated patients with the same diagnosis of intracranial

bleeding and specifically grouped those that may have had bleeding due to a primary brain

mass or tumor (See Figure 8.6b). Interestingly, UDEMD also identified patients who were

predicted to have intracranial bleeding to have the diagnosis of stroke with higher accu-
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racy, reflecting consistency with the fact that a subtype of stroke (hemorrhagic) is due to

intracranial bleeding (Figure 8.6d).

UDEMD is also useful for identifying risk trajectories of patients with the same primary

diagnosis as reflected by the utilization of healthcare services after discharge (see Figure

8.6c). UDEMD preserves the continuum of patients with the primary diagnosis of acute

coronary syndrome and organizes them by high risk (discharged to extended stays at other

facilities for further recuperation) at the top and low risk (discharged home) at the bottom

of the trajectory.

8.6 Conclusion

In this work we explored the use of earth mover’s distance to organize signals on large graphs.

We presented an unbalanced extension of Diffusion EMD, which we showed is equivalent to

the total variation unbalanced Wasserstein distance between signals on a graph. We showed

how to compute nearest neighbors in this space in time log-linear in the number of nodes

in the graph and the number of signals. Finally, we demonstrated how this can be applied

to entities which can be modeled as signals on graphs between genes, cells, and biomedical

concepts.
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Appendix

In Section 8.A we further explore the theory of UDEMD as the size of the graph increases.

In section 8.B we explore how the maximum scale K relates to the total variation weight

empirically. In section 8.C we provide further details on the experiments and implementa-

tions.

8.A Theoretical Results

In this section we further describe some of the theoretical results, namely how UDEMD

behaves as the number of points gets large and are sampled from some underlying manifold.

Lemma 2. UDEMDα,K(µ, ν) is equivalent to a Wasserstein distance Wdλ(µ, ν), defined as in

Lemma 8.4.1, with the ground distance being a truncated geodesic distance on the manifold,

i.e., dλ(x, y) = min{λ, d(x, y)} for λ > 0.

Proof. We consider a close Riemannian manifold M with geodesic d(x, y). We note ht the

heat kernel on M and Ht its corresponding operator. It is known (see [121], [82]) that

ht respects the semigroup property, the conservation property, the integrability property,

Hölder continuity estimate and can be locally upper and lower bounded. We let

Dk(x, y) := ‖h2−k(x, ·)− h2−k(y, ·)‖1,

the authors in [121] define the following multiscale metric

Dα(x, y) :=
∑
k≥0

2−kαDk(x, y).
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Moreover, they show it is equivalent to the metric d(x, y)2α, for α ∈ (0, 1/2). Now, the main

idea is that instead of computing the Wasserstein distance with respect to the geodesic, one

could compute it using Dα(x, y) which we note WDα . For two distributions µ and ν onM,

it is shown in [121] that

ŴH(µ, ν) := ‖H1(µ− ν)‖1 +
∑
k≥0

2−kα‖(H2−(k+1) −H2−k)(µ− ν)‖1 'WDα .

Using the heat kernel on M, we are able to define a metric ŴH(µ, ν) which is equivalent

to WDα , the Wasserstein with respect to d(x, y)2α. However, we cannot directly use the

heat kernel, therefore we refer to two other results from [200] (see proof of corollary 2.1 and

corollary 3.1) building upon [47].

Lemma 2.1. Let Aε be such that limε→0A
t/ε
ε = Ht, for ε small enough, we have:

Ŵ
A
t/ε
ε
'WDα .

For example, it is shown that the anisotropic and isotropic operator At defined in [47]

will indeed converge to the heat kernel when ε → 0. The next lemma can be seen as a

bridge between discrete and continuous, it corresponds to Corollary 3.1 in [200]. Because

we have a finite set of points, we can only approximate the operator At. For the isotropic

operator, one could use the approximation as in [47]. By defining kt(x, y) = e−d(x,y)2/t,

dt(x) =
∑
y

kt(x, y) and pt(x, y) = kt(x, y)/dt(x),

the operator is (Ptf)(x) =
∑

y pt(x, y)f(y). As discussed in [47], this sum converges to

an integral (up to a normalization constant), thus to the operator At when the number of

observations tends to infinity.

Lemma 2.2. Let Xi, Xj ∈ X be two datasets with size ni and nj respectively, and let µi

and µj be the continuous distributions corresponding to the ones of Xi and Xj , let K be

the largest scale and put N = min(K,ni, nj). Then, for sufficiently big N → ∞ (implying
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sufficiently small ε = 2−K → 0):

DEMDα,K(Xi, Xj) 'Wd2α
M

(µi, µj),

for all α ∈ (0, 1/2).

In our case, Xi and Xj are two signals on a graph.

Finally, we note that for all λ > 0, the metrics {1, d(x, y)} ' min{λ, d(x, y)}, indeed for

λ > 1 we have

(1/λ) min{λ, d(x, y)} ≤ min{1, d(x, y)} ≤ min{λ, d(x, y)}

and

min{(1/λ), d(x, y)} ≤ min{1, d(x, y)} ≤ λmin{(1/λ), d(x, y)}.

On a close Riemannian manifold we can define the constant in the minimum to be the

largest geodesic distance, thus d(x, y)2α ' min{λ, d(x, y)2α} and the Wasserstein distances

induced by these metrics are also equivalent. Therefore we know that DEMD is equivalent

to a class of Wasserstein with thresholded ground distance, i.e. {Wdλ}λ>0. Since UDEMD

is a special case of DEMD where the largest scale does not depend on the mixing time, it

is also equivalent to the class of Wasserstein with thresholded ground distance.

8.A.1 Robustness to Corruption

Many related works exist on unbalanced transport we suggest [165, Sec. 10.2] for a broad

overview. The thresholded Wasserstein distance considered here has benefits both computa-

tionally and in terms of robustness. Intuitively, for the standard optimal transport problem

under an adversarial noise model where the adversary is allowed to add a small fraction ε of

points at an arbitrary location, the adversary is able to affect the Wasserstein distance by

roughly ελ, where λ := maxC is defined as the maximum cost over the domain. In many

domains the maximum cost, maxC can be arbitrarily large e.g. Rd, with a thresholded cost

we immediately limit the power of this type of adversarial noise.
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8.B Unbalanced Transport

In this section we investigate the relationship between the maximum scale K of UDEMD

and the threshold λ, which can be equivalently expressed as the weight of the total varia-

tion coefficient in equation 8.5. The theory in sections 8.4.1 and Appendix 8.A suggest a

relationship between K and λ. However, the exact relationship is impossible to determine

due to the constants in the notion of equivalence used in Lemma 8.4.2. Instead we investi-

gate this relationship empirically in Figure 8.7. We use the same toy sphere dataset with

10000 points uniformly distributed over the unit sphere equipped with a 10-nearest-neighbor

graph.

Here we see that the UDEMD of specified K is closely related to the thresholded arc

length distance (or geodesic) on the sphere manifold.

Figure 8.7: Compares the thresholded ground distance with threshold level λ (orange)
with the UDEMD for different maximum scales K ∈ {1 . . . 7} (blue) on the sphere with
n = 10000. Larger K corresponds to larger λ as shown in the bottom right figure in a
roughly linear relationship.

8.C Experiment Details

In this section we present details of our experiments and implementations including infor-

mation on our evaluation metrics, dataset preprocessing, and algorithmic implementations.

174



8.C.1 Metrics

Clustering Metrics For the single cell datasets we use four methods to measure how

well distance matrices match ground truth clusterings of distributions. These four metrics

the Silhouette score, the adjusted rand index, the normalized mutual information, and

the adjusted mutual information measure how well two clusterings of the data align. The

Silhoette score measures how similar a point is to points in its own cluster as compared to

those in other clusters with some distance metric. To compare distance matrices Silhoette

score relative to some ground truth clustering, we measure the Silhoette score using the

distance matrix of interest.

This is in contrast to the ARI, NMI, and AMI scores which all compare two clusterings

of the data. For these methods, we first cluster the distance matrix using spectral clustering,

then compare this clustering with the ground truth. The adjusted rand index measures the

similarity of two cluster by counting the pairs of samples that assigned to the predicted

vs. true clusters. This is then normalized so that a score of zero should correspond to

random clusters and a score of 1 corresponds to perfectly matching clusters up to a label

permutation. Scores here range from -1 to 1. The NMI scores the mutual information of

the between clusterings and ranges from 0 to 1. Finally, the AMI is similar to the NMI

however it is adjusted (downwards) to adjust for random chance labelings.

All of these metrics are implemented using sklearn.metrics [159].

Embedding Metrics with Labels To evaluate the quality of patient embeddings where

we have patient labels, we measure the k-nearest-neighbor classification accuracy on the

embeddings for different values of k. We choose k ∈ {1, 10, 100} to evaluate the performance

of embeddings at different neighborhood scales in Figure 8.6e.

8.C.2 Dataset Details

Cell line dataset For this dataset we preprocess the data as in [92] to get a matrix of

cosine distances between genes. We use this cosine distance matrix for the Sinkhorn-OT cost

matrix, which we note requires n2 memory to store. To construct our graph for UDEMD

we connect genes with cosine distance < 0.6. We choose this parameter for an appropriate
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level of sparsity. We then compute the embeddings according to Algorithm 2, and subselect

to 10% of the elements of the embedding to get the results in Figure 8.4. This reduces the

time to compute nearest neighbors over the embeddings using a ball tree algorithm from

sklearn [159]. This strategy should enable time complexities that scale linearly with the

number of cells instead of quadratic scaling in [92] and cubic in [15].

PBMC Dataset Peripheral Blood Mononuclear Cells (PBMCs) are immune cells that

travel in the blood to identify and traffic to sites of inflammation. To build a graph between

cells we first normalize each cell to have 10,000 gene counts, then square root transform

elementwise to weight genes appropriately. We then construct a graph with a anisotropic

alpha-decay kernel as in [148], which in practice behaves similarly to a k-nearest-neighbors

graph.

PBMCs include T cells, B cells and monocytes, each with unique functions defined by

distinct transcriptomic states. Recently [54], described a set of genes which define each of

these cell types: for T cell: CD3D, CD3E, CD3G, TRAC, CD4, TCF7, IL7R, CD8A, CD8B,

GZMK, CCL5, NKG7, for B cells: CD19, MS4A1, CD79A, CD79B, MZB1, IGHD, IGHM,

CD38,XBP1, CD27, SLAMF7, IGHA1, IGHA2, IGHG1, IGHG2, IGHG3, IGHG4 and for

Monocytes: VCAN, FCN1, S100A8, S100A9, CD14, ITGAL, ITGAM, CSF3R, CSF1R,

CX3CR1,TYROBP, LYZ, S100A12, FCN1, FCGR3A, FCGR3B, ITGAL, ITGAM, CSF3R,

CSF1R, CX3CR1, CDKN1C, MS4A7. We used these curated lists as ground truth clusters

to score gene distances.

MIMIC-III / SNOMED-CT dataset MIMIC-III discharge summary text from 52,150

unique patient admissions were extracted from the NOTEEVENTS table subset by CATE-

GORY as ”Discharge summary” written by physician providers. Diagnoses metadata were

extracted from the admissions table under DIAGNOSIS, which is the free text diagnosis en-

tered by clinical providers on admission to the hospital. Out of 15,693 distinct diagnoses, 14

categories were grouped based on clinical expertise, with the reference for specific groupings

in the code provided.

MetaMap processing of the raw text from the discharge summaries used the setting of
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composite phrases (Q) with 3 elements, and reducing the number of candidate concepts

using the prune option to 30 (recommended setting to avoid out-of-memory errors during

processing). For text that still was unable to be processed, we used the setting of disabling

composite phrases (Q=0) and setting the prune option to 10. We used the 2018 version of

MetaMap with the 2018AB relaxed version terminology, USABase containing SNOMED-CT

concepts.

Relationships between concepts in SNOMED-CT were subset to the Clinical Findings

concept model, with a total of 19 types of edges. All relationship types were used to create

edges between concepts into a large sparse adjacency matrix with 437,855 x 437,855 nodes

with 3,672,277 edges in total. The final extracted concepts from the discharge summaries

had a total of 24,826 nodes due to redundant and inactivated concepts. This may have been

due to the fact that the MetaMap extractor was the 2018 version, whereas the SNOMED-CT

knowledge graph is the 2021 version (the 2018 version was unavailable).

8.C.3 Method Details

Our method UDEMD is implemented using Pytorch [158] and Pytorch Geometric [67] for

fast GPU computation with sparse graphs. We compare this to a Sinkhorn-OT algorithm

as implemented in [92] which is also implemented in Pytorch. We note that there are other

similar implementations of the Sinkhorn algorithm such as those available in the python

optimal transport package [68] or through alternative libraries such as KeOps [37]. While

these implementations may vary in their efficiency, we note that any implementation of the

Sinkhorn algorithm with a full cost matrix will scale asymptotically at least with n2.

In contrast, UDEMD for sparse adjacency matrices is able to capitalize on the structure

of total variation unbalanced transport’s limited radius or distance threshold, which helps

to localize computation to local neighborhoods, making it unnecessary to operate on the

full n × n distance matrix. For specific implementations we refer to the code. We note

that UDEMD’s implementation is similar to that of graph neural networks (GNNs) [216],

and hence can take advantage of frameworks that allow for efficient training of these GNNs.

While the implementations are similar we note that the goal of UDEMD as an unsupervised

approximation of the unbalanced Wasserstein distance is quite different than that of GNNs.
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8.C.4 Compute Details

All experiments were run on a single machine equipped with an AMD Ryzen Threadripper

2990WX 32-Core Processor, 128GB of ram, and two NVIDIA TITAN RTX GPUs.
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Chapter 9

Discussion and Future Work

This thesis combines ideas from graph signal processing, deep learning, and optimal trans-

port to improve the interpretability, accuracy, and efficiency of data processing algorithms.

Melding these ideas together leverages different aspects of the geometry of data. No tool

for is best at processing all types of data. By taking the best parts of each this thesis takes

a small step in understanding the data with weak supervision from multiple perspectives.

9.1 Future Work

Looking forward, despite the progress made in this thesis and by other related work, there

remain many open problems as the data collection and computational resources continue to

evolve. What may be the best algorithm for the task today will not be tomorrow. Building

on the work in this thesis, there are a number of open directions and problems. We split

this future work into a few different directions, first we consider further applications of the

algorithms developed in this thesis. These algorithms are still in development and may

need further adaptation to specific data and applications. Second, we consider further

theoretical results. Many of these algorithms are developed based on what works, and

further generalization could help to gain a better understanding of the underlying benefits

and biases of these works.
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9.1.1 Further Applications of Algorithms and Methods

Application of TrajectoryNet to Mammospheres In Chapter 6 we presented an

algorithm for learning the dynamics of signal cells in a continuous way. In ongoing work

we are applying this method to a triple-negative breast cancer dataset. The well studied

epithelial-to-mesenchymal transition (EMT) process delineates how cells, and in particular

cancer cells, transform from sticky structural epithelial cells to free floating mesenchymal

cells. This is important in understanding how cancer can metastasis and spread to new

locations. Equally important but less well understood is the mesenchymal-to-epithelial

transition (MET) process. When cancer cells spread to a new location, to take root they

transition at least partially back into an epithelial state. Studying how this transition occurs

may lead to new drug targets preventing metastasis.

We study the MET transition with a single-cell dataset of five timepoints of 3D cultured

mammosphere organoids. Using a combination of TrajectoryNet and Granger causality

analysis we hope to uncover the MET program — the sequence of transcription factors and

genes that lead a mesenchymal breast cancer cell to transition to a more epithelial state.

A secondary goal of this project is to understand the culture better. Only 10% of the

cells in the cell line become mammospheres, and understanding what makes these 10%

of cells different is key to studying these cells and understanding the MET biology. Our

preliminary findings suggest that cell cycle as well as the E-cadherin (CDH1) and CAV1

genes are related to this process.

Application of Diffusion EMD to Patient Derived Organoid (PDO) Drug screen

Diffusion EMD in Chapter 7 and unbalanced Diffusion EMD in Chapter 8 suggest ways to

compute optimal transport distances between a large number of distributions very quickly.

In this application with data from Chris Tape’s Lab at Univeristy College London and in

collaboration with Maria Ramos we have a set of over 5,000 single-cell datasets in different

patient, drug, and co-culture conditions. This dataset gives us a chance to understand the

effects of drug and co-culture at a large scale. However, given the large size of this dataset it

is difficult to understand the effects of these different conditions. We aim to apply Diffusion

EMD and other multiscale approximations of the the earth mover’s distance to understand
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the local effects of these conditions.

9.1.2 Theoretical Generalization

Diffusion EMD and unbalanced Diffusion EMD explore multiscale approximations to the

earth mover’s distance. Both of these methods rely on interesting multiscale approximations

to markov random walks, diffusion, or powers of sparse matrices. These works suggest

possible improvements to other work which use diffusion on graphs built from data. In

particular, by noticing that the rank of P t for some diffusion matrix P shrinks rapidly with

t, we can use low rank approximations for large t. While this is a spectral approximation,

there are also interesting avenues in spatial approximation, which we explore briefly in

integrated diffusion with local denoising [112]. By using a multiscale diffusion operator we

were able to denoise the manifold locally. In the future we can use ideas from interpolative

decomposition and wavelets to design smoothly integrating spatial sections of the manifold.

Another direction of inquiry in the direction of the unbalanced variant of Diffusion EMD

is into the relationship between the maximum scale K, and the λ balancing the Wasserstein

distance with the total variation distance. In Chapter 8 we showed an empirical relationship,

however a precise theoretical relationship is more difficult to show, requiring a more fine

grained analysis of both diffusion distances and the scale parameter’s effect on the distance

threshold.

Trajectory inference in single cell genomics with TrajectoryNet has many advantages.

By directly learning the full and continuous gene trajectories we are able to regularize

trajectories based on the geometry, which is not possible when optimizing over a discrete

matching. However, this raises a number of questions on identifiability. Specifically, in

what cases can the origin or ancestor cells be determined for a given population? What

are the tradeoffs for using such a continuous method? and finally, are there cases which are

identifiable either in a discrete time context that are not identifiable in a continuous time

context or vice-versa?
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9.1.3 Casual Learning

The methods presented in this thesis are statistical not causal. While they may be useful

for predicting in a similar setting, they are not necessarily useful when the underlying

conditions change. This is the problem tackled by causal inference. With the further

assumption of a causal model, we can attempt to make inferences about counter-factuals

and situations which are not present in the data. While some of this work is applied to

perturbation data, namely Diffusion EMD (Chapter 7), we do not assume a causal model.

Doing so might allow us to make further inferences into counter-factuals and other out of

domain questions as in [201]. Single-cell genomics has the power to sample the distribution

of possible cellular states in a given condition, using a combination of optimal transport and

causal inference will allow us to measure how a shift in the latent causes affects different

parts of the distribution differently.
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[51] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural

Networks on Graphs with Fast Localized Spectral Filtering. Adv. Neural Inf. Process.

Syst. 30, 2016.

[52] Pinar Demetci, Rebecca Santorella, Björn Sandstede, William Stafford Noble, and

Ritambhara Singh. Gromov-Wasserstein optimal transport to align single-cell multi-

omics data. Preprint, Bioinformatics, April 2020.

[53] Federico Di Mattia, Paolo Galeone, Michele De Simoni, and Emanuele Ghelfi. A

Survey on GANs for Anomaly Detection. ArXiv190611632 Cs Stat, June 2019.

[54] Jiarui Ding, Xian Adiconis, Sean K. Simmons, Monika S. Kowalczyk, Cynthia C. Hes-

sion, Nemanja D. Marjanovic, Travis K. Hughes, Marc H. Wadsworth, Tyler Burks,

Lan T. Nguyen, John Y. H. Kwon, Boaz Barak, William Ge, Amanda J. Kedaigle,

Shaina Carroll, Shuqiang Li, Nir Hacohen, Orit Rozenblatt-Rosen, Alex K. Shalek,
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[156] Nicolas Papadakis, Gabriel Peyré, and Edouard Oudet. Optimal Transport with

Proximal Splitting. SIAM J. Imaging Sci., 7(1):212–238, 2014.

[157] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked Autoregressive Flow

for Density Estimation. In Advances in Neural Information Processing Systems 30,

pages 2338–2347, 2017.

[158] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-

son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-

Torch: An Imperative Style, High-Performance Deep Learning Library. In Advances

in Neural Information Processing Systems 33, pages 8026–8037, 2019.

[159] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, Jake Vanderplas, Alexandre Passos, and David Cournapeau. Scikit-learn:

Machine Learning in Python. Mach. Learn. PYTHON, 2011.

[160] Ofir Pele and Michael Werman. Fast and robust Earth Mover’s Distances. In 2009

202



IEEE 12th International Conference on Computer Vision, pages 460–467, Kyoto,

September 2009. IEEE. ISBN 978-1-4244-4420-5. doi: 10.1109/ICCV.2009.5459199.

[161] Brandt D. Pence. Severe COVID-19 and aging: are monocytes the key? GeroScience,

42(4):1051–1061, 2020.

[162] Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. OCGAN: One-class Novelty

Detection Using GANs with Constrained Latent Representations. ArXiv190308550

Cs, March 2019.

[163] Michael Perlmutter, Guy Wolf, and Matthew Hirn. Geometric scattering on manifolds.

In NeurIPS 2018 Workshop on Integration of Deep Learning Theories, 2018.

[164] Michael Perlmutter, Feng Gao, Guy Wolf, and Matthew Hirn. Understanding graph

neural networks with asymmetric geometric scattering transforms. arXiv preprint

arXiv:1911.06253, 2019.
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